Cargando…
Differential Effects of Dry vs. Wet Heating of β-Lactoglobulin on Formation of sRAGE Binding Ligands and sIgE Epitope Recognition
The effect of glycation and aggregation of thermally processed β-lactoglobulin (BLG) on binding to sRAGE and specific immunoglobulin E (sIgE) from cow milk allergic (CMA) patients were investigated. BLG was heated under dry conditions (water activity < 0.7) and wet conditions (in phosphate buffer...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627217/ https://www.ncbi.nlm.nih.gov/pubmed/31242665 http://dx.doi.org/10.3390/nu11061432 |
_version_ | 1783434687741427712 |
---|---|
author | Zenker, Hannah E. Ewaz, Arifa Deng, Ying Savelkoul, Huub F. J. van Neerven, R.J. Joost De Jong, Nicolette W. Wichers, Harry J. Hettinga, Kasper A. Teodorowicz, Malgorzata |
author_facet | Zenker, Hannah E. Ewaz, Arifa Deng, Ying Savelkoul, Huub F. J. van Neerven, R.J. Joost De Jong, Nicolette W. Wichers, Harry J. Hettinga, Kasper A. Teodorowicz, Malgorzata |
author_sort | Zenker, Hannah E. |
collection | PubMed |
description | The effect of glycation and aggregation of thermally processed β-lactoglobulin (BLG) on binding to sRAGE and specific immunoglobulin E (sIgE) from cow milk allergic (CMA) patients were investigated. BLG was heated under dry conditions (water activity < 0.7) and wet conditions (in phosphate buffer at pH 7.4) at low temperature (<73 °C) and high temperatures (>90 °C) in the presence or absence of the milk sugar lactose. Nε-(carboxymethyl)-l-lysine (CML) western blot and glycation staining were used to directly identify glycation structures on the protein fractions on SDS-PAGE. Western blot was used to specify sRAGE and sIgE binding fractions. sRAGE binding was highest under wet-heated BLG independent of the presence of the milk sugar lactose. Under wet heating, high-molecular-weight aggregates were most potent and did not require the presence of CML to generate sRAGE binding ligands. In the dry system, sRAGE binding was observed only in the presence of lactose. sIgE binding affinity showed large individual differences and revealed four binding profiles. Dependent on the individual, sIgE binding decreased or increased by wet heating independent of the presence of lactose. Dry heating required the presence of lactose to show increased binding to aggregates in most individuals. This study highlights an important role of heating condition-dependent protein aggregation and glycation in changing the immunogenicity and antigenicity of cow’s milk BLG. |
format | Online Article Text |
id | pubmed-6627217 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66272172019-07-23 Differential Effects of Dry vs. Wet Heating of β-Lactoglobulin on Formation of sRAGE Binding Ligands and sIgE Epitope Recognition Zenker, Hannah E. Ewaz, Arifa Deng, Ying Savelkoul, Huub F. J. van Neerven, R.J. Joost De Jong, Nicolette W. Wichers, Harry J. Hettinga, Kasper A. Teodorowicz, Malgorzata Nutrients Article The effect of glycation and aggregation of thermally processed β-lactoglobulin (BLG) on binding to sRAGE and specific immunoglobulin E (sIgE) from cow milk allergic (CMA) patients were investigated. BLG was heated under dry conditions (water activity < 0.7) and wet conditions (in phosphate buffer at pH 7.4) at low temperature (<73 °C) and high temperatures (>90 °C) in the presence or absence of the milk sugar lactose. Nε-(carboxymethyl)-l-lysine (CML) western blot and glycation staining were used to directly identify glycation structures on the protein fractions on SDS-PAGE. Western blot was used to specify sRAGE and sIgE binding fractions. sRAGE binding was highest under wet-heated BLG independent of the presence of the milk sugar lactose. Under wet heating, high-molecular-weight aggregates were most potent and did not require the presence of CML to generate sRAGE binding ligands. In the dry system, sRAGE binding was observed only in the presence of lactose. sIgE binding affinity showed large individual differences and revealed four binding profiles. Dependent on the individual, sIgE binding decreased or increased by wet heating independent of the presence of lactose. Dry heating required the presence of lactose to show increased binding to aggregates in most individuals. This study highlights an important role of heating condition-dependent protein aggregation and glycation in changing the immunogenicity and antigenicity of cow’s milk BLG. MDPI 2019-06-25 /pmc/articles/PMC6627217/ /pubmed/31242665 http://dx.doi.org/10.3390/nu11061432 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zenker, Hannah E. Ewaz, Arifa Deng, Ying Savelkoul, Huub F. J. van Neerven, R.J. Joost De Jong, Nicolette W. Wichers, Harry J. Hettinga, Kasper A. Teodorowicz, Malgorzata Differential Effects of Dry vs. Wet Heating of β-Lactoglobulin on Formation of sRAGE Binding Ligands and sIgE Epitope Recognition |
title | Differential Effects of Dry vs. Wet Heating of β-Lactoglobulin on Formation of sRAGE Binding Ligands and sIgE Epitope Recognition |
title_full | Differential Effects of Dry vs. Wet Heating of β-Lactoglobulin on Formation of sRAGE Binding Ligands and sIgE Epitope Recognition |
title_fullStr | Differential Effects of Dry vs. Wet Heating of β-Lactoglobulin on Formation of sRAGE Binding Ligands and sIgE Epitope Recognition |
title_full_unstemmed | Differential Effects of Dry vs. Wet Heating of β-Lactoglobulin on Formation of sRAGE Binding Ligands and sIgE Epitope Recognition |
title_short | Differential Effects of Dry vs. Wet Heating of β-Lactoglobulin on Formation of sRAGE Binding Ligands and sIgE Epitope Recognition |
title_sort | differential effects of dry vs. wet heating of β-lactoglobulin on formation of srage binding ligands and sige epitope recognition |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627217/ https://www.ncbi.nlm.nih.gov/pubmed/31242665 http://dx.doi.org/10.3390/nu11061432 |
work_keys_str_mv | AT zenkerhannahe differentialeffectsofdryvswetheatingofblactoglobulinonformationofsragebindingligandsandsigeepitoperecognition AT ewazarifa differentialeffectsofdryvswetheatingofblactoglobulinonformationofsragebindingligandsandsigeepitoperecognition AT dengying differentialeffectsofdryvswetheatingofblactoglobulinonformationofsragebindingligandsandsigeepitoperecognition AT savelkoulhuubfj differentialeffectsofdryvswetheatingofblactoglobulinonformationofsragebindingligandsandsigeepitoperecognition AT vanneervenrjjoost differentialeffectsofdryvswetheatingofblactoglobulinonformationofsragebindingligandsandsigeepitoperecognition AT dejongnicolettew differentialeffectsofdryvswetheatingofblactoglobulinonformationofsragebindingligandsandsigeepitoperecognition AT wichersharryj differentialeffectsofdryvswetheatingofblactoglobulinonformationofsragebindingligandsandsigeepitoperecognition AT hettingakaspera differentialeffectsofdryvswetheatingofblactoglobulinonformationofsragebindingligandsandsigeepitoperecognition AT teodorowiczmalgorzata differentialeffectsofdryvswetheatingofblactoglobulinonformationofsragebindingligandsandsigeepitoperecognition |