Cargando…
Preclinical Evaluation of 1,2-Diamino-4,5-Dibromobenzene in Genetically Engineered Mouse Models of Pancreatic Cancer
Background: Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to standard chemo- and radiotherapy. Recently, a new class of non-platinum-based halogenated molecules (called FMD compounds) was discovered that selectively kills cancer cells. Here, we investigate the potential of 1,2-Diamino-...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627568/ https://www.ncbi.nlm.nih.gov/pubmed/31181844 http://dx.doi.org/10.3390/cells8060563 |
Sumario: | Background: Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to standard chemo- and radiotherapy. Recently, a new class of non-platinum-based halogenated molecules (called FMD compounds) was discovered that selectively kills cancer cells. Here, we investigate the potential of 1,2-Diamino-4,5-dibromobenzene (2Br-DAB) in combination with standard chemotherapy and radiotherapy in murine and human PDAC. Methods: Cell viability and colony formation was performed in human (Panc1, BxPC3, PaTu8988t, MiaPaCa) and three murine LSL-Kras(G12D/+);LSL-Trp53(R172H/+);Pdx-1-Cre (KPC) pancreatic cancer cell lines. In vivo, preclinical experiments were conducted in LSL-Kras(G12D/+);p48-Cre (KC) and KPC mice using 2Br-DAB (7 mg/kg, i.p.), +/- radiation (10 × 1.8 Gy), gemcitabine (100 mg/kg, i.p.), or a combination. Tumor growth and therapeutic response were assessed by high-resolution ultrasound and immunohistochemistry. Results: 2Br-DAB significantly reduced cell viability in human and murine pancreatic cancer cell lines in a dose-dependent manner. In particular, colony formation in human Panc1 cells was significantly decreased upon 25 µM 2Br-DAB + radiation treatment compared with vehicle control (p = 0.03). In vivo, 2Br-DAB reduced tumor frequency in KC mice. In the KPC model, 2Br-DAB or gemcitabine monotherapy had comparable therapeutic effects. Furthermore, the combination of gemcitabine and 2Br-DAB or 2Br-DAB and 18 Gy irradiation showed additional antineoplastic effects. Conclusions: 2Br-DAB is effective in killing pancreatic cancer cells in vitro. 2Br-DAB was not toxic in vivo, and additional antineoplastic effects were observed in combination with irradiation. |
---|