Cargando…
A (3D-Nuclear) Space Odyssey: Making Sense of Hi-C Maps
Three-dimensional (3D)-chromatin organization is critical for proper enhancer-promoter communication and, therefore, for a precise execution of the transcriptional programs governing cellular processes. The emergence of Chromosome Conformation Capture (3C) methods, in particular Hi-C, has allowed th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627722/ https://www.ncbi.nlm.nih.gov/pubmed/31146487 http://dx.doi.org/10.3390/genes10060415 |
Sumario: | Three-dimensional (3D)-chromatin organization is critical for proper enhancer-promoter communication and, therefore, for a precise execution of the transcriptional programs governing cellular processes. The emergence of Chromosome Conformation Capture (3C) methods, in particular Hi-C, has allowed the investigation of chromatin interactions on a genome-wide scale, revealing the existence of overlapping molecular mechanisms that we are just starting to decipher. Therefore, disentangling Hi-C signal into these individual components is essential to provide meaningful biological data interpretation. Here, we discuss emerging views on the molecular forces shaping the genome in 3D, with a focus on their respective contributions and interdependence. We discuss Hi-C data at both population and single-cell levels, thus providing criteria to interpret genomic function in the 3D-nuclear space. |
---|