Cargando…

An Algal Metabolite-Based PPAR-γ Agonist Displayed Anti-Inflammatory Effect via Inhibition of the NF-κB Pathway

In our previous study, a synthetic compound, (+)-(R,E)-6a1, that incorporated the key structures of anti-inflammatory algal metabolites and the endogenous peroxisome proliferator-activated receptor γ (PPAR-γ) ligand 15-deoxy-∆(12,14)-prostaglandin J(2) (15d-PGJ(2)), exerted significant PPAR-γ transc...

Descripción completa

Detalles Bibliográficos
Autores principales: Ju, Zhiran, Su, Mingzhi, Li, Dandan, Hong, Jongki, Im, Dong-Soon, Kim, Suhkmann, Kim, Eun La, Jung, Jee H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627743/
https://www.ncbi.nlm.nih.gov/pubmed/31151271
http://dx.doi.org/10.3390/md17060321
Descripción
Sumario:In our previous study, a synthetic compound, (+)-(R,E)-6a1, that incorporated the key structures of anti-inflammatory algal metabolites and the endogenous peroxisome proliferator-activated receptor γ (PPAR-γ) ligand 15-deoxy-∆(12,14)-prostaglandin J(2) (15d-PGJ(2)), exerted significant PPAR-γ transcriptional activity. Because PPAR-γ expressed in macrophages has been postulated as a negative regulator of inflammation, this study was designed to investigate the anti-inflammatory effect of the PPAR-γ agonist, (+)-(R,E)-6a1. Compound (+)-(R,E)-6a1 displayed in vitro anti-inflammatory activity in lipopolysaccharides (LPS)-stimulated murine RAW264.7 macrophages. Compound (+)-(R,E)-6a1 suppressed the expression of proinflammatory factors, such as nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), possibly by the inhibition of the nuclear factor-κB (NF-κB) pathway. In macrophages, (+)-(R,E)-6a1 suppressed LPS-induced phosphorylation of NF-κB, inhibitor of NF-κB α (IκBα), and IκB kinase (IKK). These results indicated that PPAR-γ agonist, (+)-(R,E)-6a1, exerts anti-inflammatory activity via inhibition of the NF-κB pathway.