Cargando…

Rational Design of Alginate Lyase from Microbulbifer sp. Q7 to Improve Thermal Stability

Alginate lyase degrades alginate by the β-elimination mechanism to produce oligosaccharides with special bioactivities. The low thermal stability of alginate lyase limits its industrial application. In this study, introducing the disulfide bonds while using the rational design methodology enhanced t...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Min, Yang, Su-Xiao, Liu, Zhe-Min, Li, Nan-Nan, Li, Li, Mou, Hai-Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627800/
https://www.ncbi.nlm.nih.gov/pubmed/31242622
http://dx.doi.org/10.3390/md17060378
Descripción
Sumario:Alginate lyase degrades alginate by the β-elimination mechanism to produce oligosaccharides with special bioactivities. The low thermal stability of alginate lyase limits its industrial application. In this study, introducing the disulfide bonds while using the rational design methodology enhanced the thermal stability of alginate lyase cAlyM from Microbulbifer sp. Q7. Enzyme catalytic sites, secondary structure, spatial configuration, and molecular dynamic simulation were comprehensively analyzed. When compared with cAlyM, the mutants D102C-A300C and G103C-T113C showed an increase by 2.25 and 1.16 h, respectively, in half-life time at 45 °C, in addition to increases by 1.7 °C and 0.4 °C in the melting temperature, respectively. The enzyme-specific activity and k(cat)/K(m) values of D102C-A300C were 1.8- and 1.5-times higher than those of cAlyM, respectively. The rational design strategy that was used in this study provides a valuable method for improving the thermal stability of the alginate lyase.