Cargando…
Five-Feature Model for Developing the Classifier for Synergistic vs. Antagonistic Drug Combinations Built by XGBoost
Combinatorial drug therapy can improve the therapeutic effect and reduce the corresponding adverse events. In silico strategies to classify synergistic vs. antagonistic drug pairs is more efficient than experimental strategies. However, most of the developed methods have been applied only to cancer...
Autores principales: | Ji, Xiangjun, Tong, Weida, Liu, Zhichao, Shi, Tieliu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629777/ https://www.ncbi.nlm.nih.gov/pubmed/31338106 http://dx.doi.org/10.3389/fgene.2019.00600 |
Ejemplares similares
-
XGEM: Predicting Essential miRNAs by the Ensembles of Various Sequence-Based Classifiers With XGBoost Algorithm
por: Min, Hui, et al.
Publicado: (2022) -
Gene Expression Value Prediction Based on XGBoost Algorithm
por: Li, Wei, et al.
Publicado: (2019) -
A Novel XGBoost Method to Identify Cancer Tissue-of-Origin Based on Copy Number Variations
por: Zhang, Yulin, et al.
Publicado: (2020) -
VTP-Identifier: Vesicular Transport Proteins Identification Based on PSSM Profiles and XGBoost
por: Gong, Yue, et al.
Publicado: (2022) -
Identification of Cancer-Related Long Non-Coding RNAs Using XGBoost With High Accuracy
por: Zhang, Xuan, et al.
Publicado: (2019)