Cargando…

Immunological evidence for in vivo production of novel advanced glycation end-products from 1,5-anhydro-D-fructose, a glycogen metabolite

The anhydrofructose pathway is an alternate pathway for glycogen degradation by α-1,4-glucan lyase. The sugar 1,5-anhydro-D-fructose (1,5-AF) acts as the central intermediate of this pathway, but its physiological role of in mammals is unclear. Glycation reactions forming advanced glycation end-prod...

Descripción completa

Detalles Bibliográficos
Autores principales: Sakasai-Sakai, Akiko, Takata, Takanobu, Suzuki, Hirokazu, Maruyama, Ikuro, Motomiya, Yoshihiro, Takeuchi, Masayoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629992/
https://www.ncbi.nlm.nih.gov/pubmed/31308400
http://dx.doi.org/10.1038/s41598-019-46333-2
Descripción
Sumario:The anhydrofructose pathway is an alternate pathway for glycogen degradation by α-1,4-glucan lyase. The sugar 1,5-anhydro-D-fructose (1,5-AF) acts as the central intermediate of this pathway, but its physiological role of in mammals is unclear. Glycation reactions forming advanced glycation end-products (AGEs) are important in the development of complications of diabetes mellitus. We hypothesized that 1,5-AF may contribute to cellular damage by forming 1,5-AF-derived AGEs (AF-AGEs) with intracellular proteins. To clarify the role of 1,5-AF in protein modification, we created a novel antibody targeting AF-AGEs. Serum albumin modified by AF-AGEs was prepared by incubating rabbit serum albumin (RSA) or bovine serum albumin (BSA) with 1,5-AF. After immunizing rabbits with AF-AGEs-RSA, affinity chromatography of anti-AF-AGE antiserum was performed on a Sepharose 4B column coupled with AF-AGEs-BSA or N-(carboxymethyl)/N-(carboxyethyl)lysine-BSA. A novel immunopurified anti-AF-AGE antibody was obtained and was characterized using a competitive enzyme-linked immunosorbent assay. Then an AF-AGEs assay was established using this immunopurified antibody. This assay was able to detect AF-AGEs in human and animal serum samples. Finally, intracellular accumulation of AF-AGEs was shown to be associated with damage to cultured hepatocytes (HepG2 cells). This is the first report about in vivo detection of AF-AGEs with a novel structural epitope.