Cargando…

Design and Validation of a Single-SOI-Wafer 4-DOF Crawling Microgripper

This paper deals with the manipulation of micro-objects operated by a new concept multi-hinge multi-DoF (degree of freedom) microsystem. The system is composed of a planar 3-DoF microstage and of a set of one-DoF microgrippers, and it is arranged is such a way as to allow any microgripper to crawl o...

Descripción completa

Detalles Bibliográficos
Autores principales: Verotti, Matteo, Bagolini, Alvise, Bellutti, Pierluigi, Belfiore, Nicola Pio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630305/
https://www.ncbi.nlm.nih.gov/pubmed/31195703
http://dx.doi.org/10.3390/mi10060376
Descripción
Sumario:This paper deals with the manipulation of micro-objects operated by a new concept multi-hinge multi-DoF (degree of freedom) microsystem. The system is composed of a planar 3-DoF microstage and of a set of one-DoF microgrippers, and it is arranged is such a way as to allow any microgripper to crawl over the stage. As a result, the optimal configuration to grasp the micro-object can be reached. Classical algorithms of kinematic analysis have been used to study the rigid-body model of the mobile platform. Then, the rigid-body replacement method has been implemented to design the corresponding compliant mechanism, whose geometry can be transferred onto the etch mask. Deep-reactive ion etching (DRIE) is suggested to fabricate the whole system. The main contributions of this investigation consist of (i) the achievement of a relative motion between the supporting platform and the microgrippers, and of (ii) the design of a process flow for the simultaneous fabrication of the stage and the microgrippers, starting from a single silicon-on-insulator (SOI) wafer. Functionality is validated via theoretical simulation and finite element analysis, whereas fabrication feasibility is granted by preliminary tests performed on some parts of the microsystem.