Cargando…
A piggyBac-based toolkit for inducible genome editing in mammalian cells
We describe the development and application of a novel series of vectors that facilitate CRISPR-Cas9-mediated genome editing in mammalian cells, which we call CRISPR-Bac. CRISPR-Bac leverages the piggyBac transposon to randomly insert CRISPR-Cas9 components into mammalian genomes. In CRISPR-Bac, a s...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633203/ https://www.ncbi.nlm.nih.gov/pubmed/31101683 http://dx.doi.org/10.1261/rna.068932.118 |
_version_ | 1783435714276360192 |
---|---|
author | Schertzer, Megan D. Thulson, Eliza Braceros, Keean C.A. Lee, David M. Hinkle, Emma R. Murphy, Ryan M. Kim, Susan O. Vitucci, Eva C.M. Calabrese, J. Mauro |
author_facet | Schertzer, Megan D. Thulson, Eliza Braceros, Keean C.A. Lee, David M. Hinkle, Emma R. Murphy, Ryan M. Kim, Susan O. Vitucci, Eva C.M. Calabrese, J. Mauro |
author_sort | Schertzer, Megan D. |
collection | PubMed |
description | We describe the development and application of a novel series of vectors that facilitate CRISPR-Cas9-mediated genome editing in mammalian cells, which we call CRISPR-Bac. CRISPR-Bac leverages the piggyBac transposon to randomly insert CRISPR-Cas9 components into mammalian genomes. In CRISPR-Bac, a single piggyBac cargo vector containing a doxycycline-inducible Cas9 or catalytically dead Cas9 (dCas9) variant and a gene conferring resistance to Hygromycin B is cotransfected with a plasmid expressing the piggyBac transposase. A second cargo vector, expressing a single-guide RNA (sgRNA) of interest, the reverse-tetracycline TransActivator (rtTA), and a gene conferring resistance to G418, is also cotransfected. Subsequent selection on Hygromycin B and G418 generates polyclonal cell populations that stably express Cas9, rtTA, and the sgRNA(s) of interest. We show that CRISPR-Bac can be used to knock down proteins of interest, to create targeted genetic deletions with high efficiency, and to activate or repress transcription of protein-coding genes and an imprinted long noncoding RNA. The ratio of sgRNA-to-Cas9-to-transposase can be adjusted in transfections to alter the average number of cargo insertions into the genome. sgRNAs targeting multiple genes can be inserted in a single transfection. CRISPR-Bac is a versatile platform for genome editing that simplifies the generation of mammalian cells that stably express the CRISPR-Cas9 machinery. |
format | Online Article Text |
id | pubmed-6633203 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-66332032020-08-01 A piggyBac-based toolkit for inducible genome editing in mammalian cells Schertzer, Megan D. Thulson, Eliza Braceros, Keean C.A. Lee, David M. Hinkle, Emma R. Murphy, Ryan M. Kim, Susan O. Vitucci, Eva C.M. Calabrese, J. Mauro RNA Method We describe the development and application of a novel series of vectors that facilitate CRISPR-Cas9-mediated genome editing in mammalian cells, which we call CRISPR-Bac. CRISPR-Bac leverages the piggyBac transposon to randomly insert CRISPR-Cas9 components into mammalian genomes. In CRISPR-Bac, a single piggyBac cargo vector containing a doxycycline-inducible Cas9 or catalytically dead Cas9 (dCas9) variant and a gene conferring resistance to Hygromycin B is cotransfected with a plasmid expressing the piggyBac transposase. A second cargo vector, expressing a single-guide RNA (sgRNA) of interest, the reverse-tetracycline TransActivator (rtTA), and a gene conferring resistance to G418, is also cotransfected. Subsequent selection on Hygromycin B and G418 generates polyclonal cell populations that stably express Cas9, rtTA, and the sgRNA(s) of interest. We show that CRISPR-Bac can be used to knock down proteins of interest, to create targeted genetic deletions with high efficiency, and to activate or repress transcription of protein-coding genes and an imprinted long noncoding RNA. The ratio of sgRNA-to-Cas9-to-transposase can be adjusted in transfections to alter the average number of cargo insertions into the genome. sgRNAs targeting multiple genes can be inserted in a single transfection. CRISPR-Bac is a versatile platform for genome editing that simplifies the generation of mammalian cells that stably express the CRISPR-Cas9 machinery. Cold Spring Harbor Laboratory Press 2019-08 /pmc/articles/PMC6633203/ /pubmed/31101683 http://dx.doi.org/10.1261/rna.068932.118 Text en © 2019 Schertzer et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by the RNA Society for the first 12 months after the full-issue publication date (see http://rnajournal.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Method Schertzer, Megan D. Thulson, Eliza Braceros, Keean C.A. Lee, David M. Hinkle, Emma R. Murphy, Ryan M. Kim, Susan O. Vitucci, Eva C.M. Calabrese, J. Mauro A piggyBac-based toolkit for inducible genome editing in mammalian cells |
title | A piggyBac-based toolkit for inducible genome editing in mammalian cells |
title_full | A piggyBac-based toolkit for inducible genome editing in mammalian cells |
title_fullStr | A piggyBac-based toolkit for inducible genome editing in mammalian cells |
title_full_unstemmed | A piggyBac-based toolkit for inducible genome editing in mammalian cells |
title_short | A piggyBac-based toolkit for inducible genome editing in mammalian cells |
title_sort | piggybac-based toolkit for inducible genome editing in mammalian cells |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633203/ https://www.ncbi.nlm.nih.gov/pubmed/31101683 http://dx.doi.org/10.1261/rna.068932.118 |
work_keys_str_mv | AT schertzermegand apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells AT thulsoneliza apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells AT braceroskeeanca apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells AT leedavidm apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells AT hinkleemmar apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells AT murphyryanm apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells AT kimsusano apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells AT vituccievacm apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells AT calabresejmauro apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells AT schertzermegand piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells AT thulsoneliza piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells AT braceroskeeanca piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells AT leedavidm piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells AT hinkleemmar piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells AT murphyryanm piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells AT kimsusano piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells AT vituccievacm piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells AT calabresejmauro piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells |