Cargando…

A piggyBac-based toolkit for inducible genome editing in mammalian cells

We describe the development and application of a novel series of vectors that facilitate CRISPR-Cas9-mediated genome editing in mammalian cells, which we call CRISPR-Bac. CRISPR-Bac leverages the piggyBac transposon to randomly insert CRISPR-Cas9 components into mammalian genomes. In CRISPR-Bac, a s...

Descripción completa

Detalles Bibliográficos
Autores principales: Schertzer, Megan D., Thulson, Eliza, Braceros, Keean C.A., Lee, David M., Hinkle, Emma R., Murphy, Ryan M., Kim, Susan O., Vitucci, Eva C.M., Calabrese, J. Mauro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633203/
https://www.ncbi.nlm.nih.gov/pubmed/31101683
http://dx.doi.org/10.1261/rna.068932.118
_version_ 1783435714276360192
author Schertzer, Megan D.
Thulson, Eliza
Braceros, Keean C.A.
Lee, David M.
Hinkle, Emma R.
Murphy, Ryan M.
Kim, Susan O.
Vitucci, Eva C.M.
Calabrese, J. Mauro
author_facet Schertzer, Megan D.
Thulson, Eliza
Braceros, Keean C.A.
Lee, David M.
Hinkle, Emma R.
Murphy, Ryan M.
Kim, Susan O.
Vitucci, Eva C.M.
Calabrese, J. Mauro
author_sort Schertzer, Megan D.
collection PubMed
description We describe the development and application of a novel series of vectors that facilitate CRISPR-Cas9-mediated genome editing in mammalian cells, which we call CRISPR-Bac. CRISPR-Bac leverages the piggyBac transposon to randomly insert CRISPR-Cas9 components into mammalian genomes. In CRISPR-Bac, a single piggyBac cargo vector containing a doxycycline-inducible Cas9 or catalytically dead Cas9 (dCas9) variant and a gene conferring resistance to Hygromycin B is cotransfected with a plasmid expressing the piggyBac transposase. A second cargo vector, expressing a single-guide RNA (sgRNA) of interest, the reverse-tetracycline TransActivator (rtTA), and a gene conferring resistance to G418, is also cotransfected. Subsequent selection on Hygromycin B and G418 generates polyclonal cell populations that stably express Cas9, rtTA, and the sgRNA(s) of interest. We show that CRISPR-Bac can be used to knock down proteins of interest, to create targeted genetic deletions with high efficiency, and to activate or repress transcription of protein-coding genes and an imprinted long noncoding RNA. The ratio of sgRNA-to-Cas9-to-transposase can be adjusted in transfections to alter the average number of cargo insertions into the genome. sgRNAs targeting multiple genes can be inserted in a single transfection. CRISPR-Bac is a versatile platform for genome editing that simplifies the generation of mammalian cells that stably express the CRISPR-Cas9 machinery.
format Online
Article
Text
id pubmed-6633203
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-66332032020-08-01 A piggyBac-based toolkit for inducible genome editing in mammalian cells Schertzer, Megan D. Thulson, Eliza Braceros, Keean C.A. Lee, David M. Hinkle, Emma R. Murphy, Ryan M. Kim, Susan O. Vitucci, Eva C.M. Calabrese, J. Mauro RNA Method We describe the development and application of a novel series of vectors that facilitate CRISPR-Cas9-mediated genome editing in mammalian cells, which we call CRISPR-Bac. CRISPR-Bac leverages the piggyBac transposon to randomly insert CRISPR-Cas9 components into mammalian genomes. In CRISPR-Bac, a single piggyBac cargo vector containing a doxycycline-inducible Cas9 or catalytically dead Cas9 (dCas9) variant and a gene conferring resistance to Hygromycin B is cotransfected with a plasmid expressing the piggyBac transposase. A second cargo vector, expressing a single-guide RNA (sgRNA) of interest, the reverse-tetracycline TransActivator (rtTA), and a gene conferring resistance to G418, is also cotransfected. Subsequent selection on Hygromycin B and G418 generates polyclonal cell populations that stably express Cas9, rtTA, and the sgRNA(s) of interest. We show that CRISPR-Bac can be used to knock down proteins of interest, to create targeted genetic deletions with high efficiency, and to activate or repress transcription of protein-coding genes and an imprinted long noncoding RNA. The ratio of sgRNA-to-Cas9-to-transposase can be adjusted in transfections to alter the average number of cargo insertions into the genome. sgRNAs targeting multiple genes can be inserted in a single transfection. CRISPR-Bac is a versatile platform for genome editing that simplifies the generation of mammalian cells that stably express the CRISPR-Cas9 machinery. Cold Spring Harbor Laboratory Press 2019-08 /pmc/articles/PMC6633203/ /pubmed/31101683 http://dx.doi.org/10.1261/rna.068932.118 Text en © 2019 Schertzer et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by the RNA Society for the first 12 months after the full-issue publication date (see http://rnajournal.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
spellingShingle Method
Schertzer, Megan D.
Thulson, Eliza
Braceros, Keean C.A.
Lee, David M.
Hinkle, Emma R.
Murphy, Ryan M.
Kim, Susan O.
Vitucci, Eva C.M.
Calabrese, J. Mauro
A piggyBac-based toolkit for inducible genome editing in mammalian cells
title A piggyBac-based toolkit for inducible genome editing in mammalian cells
title_full A piggyBac-based toolkit for inducible genome editing in mammalian cells
title_fullStr A piggyBac-based toolkit for inducible genome editing in mammalian cells
title_full_unstemmed A piggyBac-based toolkit for inducible genome editing in mammalian cells
title_short A piggyBac-based toolkit for inducible genome editing in mammalian cells
title_sort piggybac-based toolkit for inducible genome editing in mammalian cells
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633203/
https://www.ncbi.nlm.nih.gov/pubmed/31101683
http://dx.doi.org/10.1261/rna.068932.118
work_keys_str_mv AT schertzermegand apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells
AT thulsoneliza apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells
AT braceroskeeanca apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells
AT leedavidm apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells
AT hinkleemmar apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells
AT murphyryanm apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells
AT kimsusano apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells
AT vituccievacm apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells
AT calabresejmauro apiggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells
AT schertzermegand piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells
AT thulsoneliza piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells
AT braceroskeeanca piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells
AT leedavidm piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells
AT hinkleemmar piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells
AT murphyryanm piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells
AT kimsusano piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells
AT vituccievacm piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells
AT calabresejmauro piggybacbasedtoolkitforinduciblegenomeeditinginmammaliancells