Cargando…
Inaccurate secondary structure predictions often indicate protein fold switching
Although most proteins conform to the classical one‐structure/one‐function paradigm, an increasing number of proteins with dual structures and functions have been discovered. In response to cellular stimuli, such proteins undergo structural changes sufficiently dramatic to remodel even their seconda...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635839/ https://www.ncbi.nlm.nih.gov/pubmed/31148305 http://dx.doi.org/10.1002/pro.3664 |
_version_ | 1783435961702547456 |
---|---|
author | Mishra, Soumya Looger, Loren L. Porter, Lauren L. |
author_facet | Mishra, Soumya Looger, Loren L. Porter, Lauren L. |
author_sort | Mishra, Soumya |
collection | PubMed |
description | Although most proteins conform to the classical one‐structure/one‐function paradigm, an increasing number of proteins with dual structures and functions have been discovered. In response to cellular stimuli, such proteins undergo structural changes sufficiently dramatic to remodel even their secondary structures and domain organization. This “fold‐switching” capability fosters protein multi‐functionality, enabling cells to establish tight control over various biochemical processes. Accurate predictions of fold‐switching proteins could both suggest underlying mechanisms for uncharacterized biological processes and reveal potential drug targets. Recently, we developed a prediction method for fold‐switching proteins using structure‐based thermodynamic calculations and discrepancies between predicted and experimentally determined protein secondary structure (Porter and Looger, Proc Natl Acad Sci U S A 2018; 115:5968–5973). Here we seek to leverage the negative information found in these secondary structure prediction discrepancies. To do this, we quantified secondary structure prediction accuracies of 192 known fold‐switching regions (FSRs) within solved protein structures found in the Protein Data Bank (PDB). We find that the secondary structure prediction accuracies for these FSRs vary widely. Inaccurate secondary structure predictions are strongly associated with fold‐switching proteins compared to equally long segments of non‐fold‐switching proteins selected at random. These inaccurate predictions are enriched in helix‐to‐strand and strand‐to‐coil discrepancies. Finally, we find that most proteins with inaccurate secondary structure predictions are underrepresented in the PDB compared with their alternatively folded cognates, suggesting that unequal representation of fold‐switching conformers within the PDB could be an important cause of inaccurate secondary structure predictions. These results demonstrate that inconsistent secondary structure predictions can serve as a useful preliminary marker of fold switching. |
format | Online Article Text |
id | pubmed-6635839 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-66358392019-07-25 Inaccurate secondary structure predictions often indicate protein fold switching Mishra, Soumya Looger, Loren L. Porter, Lauren L. Protein Sci Full‐Length Papers Although most proteins conform to the classical one‐structure/one‐function paradigm, an increasing number of proteins with dual structures and functions have been discovered. In response to cellular stimuli, such proteins undergo structural changes sufficiently dramatic to remodel even their secondary structures and domain organization. This “fold‐switching” capability fosters protein multi‐functionality, enabling cells to establish tight control over various biochemical processes. Accurate predictions of fold‐switching proteins could both suggest underlying mechanisms for uncharacterized biological processes and reveal potential drug targets. Recently, we developed a prediction method for fold‐switching proteins using structure‐based thermodynamic calculations and discrepancies between predicted and experimentally determined protein secondary structure (Porter and Looger, Proc Natl Acad Sci U S A 2018; 115:5968–5973). Here we seek to leverage the negative information found in these secondary structure prediction discrepancies. To do this, we quantified secondary structure prediction accuracies of 192 known fold‐switching regions (FSRs) within solved protein structures found in the Protein Data Bank (PDB). We find that the secondary structure prediction accuracies for these FSRs vary widely. Inaccurate secondary structure predictions are strongly associated with fold‐switching proteins compared to equally long segments of non‐fold‐switching proteins selected at random. These inaccurate predictions are enriched in helix‐to‐strand and strand‐to‐coil discrepancies. Finally, we find that most proteins with inaccurate secondary structure predictions are underrepresented in the PDB compared with their alternatively folded cognates, suggesting that unequal representation of fold‐switching conformers within the PDB could be an important cause of inaccurate secondary structure predictions. These results demonstrate that inconsistent secondary structure predictions can serve as a useful preliminary marker of fold switching. John Wiley & Sons, Inc. 2019-06-17 2019-08 /pmc/articles/PMC6635839/ /pubmed/31148305 http://dx.doi.org/10.1002/pro.3664 Text en © 2019 The Authors. Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full‐Length Papers Mishra, Soumya Looger, Loren L. Porter, Lauren L. Inaccurate secondary structure predictions often indicate protein fold switching |
title | Inaccurate secondary structure predictions often indicate protein fold switching |
title_full | Inaccurate secondary structure predictions often indicate protein fold switching |
title_fullStr | Inaccurate secondary structure predictions often indicate protein fold switching |
title_full_unstemmed | Inaccurate secondary structure predictions often indicate protein fold switching |
title_short | Inaccurate secondary structure predictions often indicate protein fold switching |
title_sort | inaccurate secondary structure predictions often indicate protein fold switching |
topic | Full‐Length Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635839/ https://www.ncbi.nlm.nih.gov/pubmed/31148305 http://dx.doi.org/10.1002/pro.3664 |
work_keys_str_mv | AT mishrasoumya inaccuratesecondarystructurepredictionsoftenindicateproteinfoldswitching AT loogerlorenl inaccuratesecondarystructurepredictionsoftenindicateproteinfoldswitching AT porterlaurenl inaccuratesecondarystructurepredictionsoftenindicateproteinfoldswitching |