Cargando…

Synthesis of Highly Functionalized 2-Pyranone from Silyl Ketene

[Image: see text] We report a highly functionalized 2-pyranone small molecule prepared from tert-butyl diphenyl silyl ketene using an alkoxide catalyst and thermally induced rearrangement. Treatment of the silyl ketene with a substoichiometric amount of alkoxide led to the formation of a trimer whic...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiang, Yuanhui, Rheingold, Arnold. L., Pentzer, Emily B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645212/
https://www.ncbi.nlm.nih.gov/pubmed/31459075
http://dx.doi.org/10.1021/acsomega.8b01531
Descripción
Sumario:[Image: see text] We report a highly functionalized 2-pyranone small molecule prepared from tert-butyl diphenyl silyl ketene using an alkoxide catalyst and thermally induced rearrangement. Treatment of the silyl ketene with a substoichiometric amount of alkoxide led to the formation of a trimer which was isolated and fully characterized; heating this trimer in a 1,4-dioxane solution induced a thermal rearrangement, yielding the product 2-pyranone. The isolated intermediate and product are characterized by 1D and 2D nuclear magnetic resonance (NMR) spectroscopies, mass spectrometry, and single crystal X-ray diffraction. A mechanism for the thermally induced rearrangement is proposed based on (1)H NMR studies, and a rate law is derived from the proposed mechanism with steady-state approximation. This work illustrates a route for the formation of highly functionalized and modifiable 2-pyranone motifs with potential biological activity. The formation of the trimer, and thus the functionalized 2-pyranone, is highly dependent on the silyl substituents and alkoxide counterion and thus indicates the intriguing reactivity of highly functionalized small molecules.