Cargando…
Photomask-Free, Direct Selective Electroless Deposition on Glass by Controlling Surface Hydrophilicity
[Image: see text] This paper reports a new approach to realize direct selective electroless deposition (ELD) without the requirement of photolithography. This method involves sequential silane-compound modifications in which the first modification creates a hydrophobic surface on the TiO(2)-coated g...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648132/ https://www.ncbi.nlm.nih.gov/pubmed/31459860 http://dx.doi.org/10.1021/acsomega.9b00259 |
Sumario: | [Image: see text] This paper reports a new approach to realize direct selective electroless deposition (ELD) without the requirement of photolithography. This method involves sequential silane-compound modifications in which the first modification creates a hydrophobic surface on the TiO(2)-coated glass using a fluorine-rich alkoxysilane compound, followed by a laser ablation to create the pattern. Then, the entire substrate is immersed into an aqueous solution containing amino-silane equipped Pd nanoparticles for the second modification. Because most substrate surface is hydrophobic, the amino-silane-equipped Pd catalysts can only graft on the laser-ablated zone to accomplish selective ELD. |
---|