Cargando…
Computer Vision Classification of Barley Flour Based on Spatial Pyramid Partition Ensemble
Imaging sensors are largely employed in the food processing industry for quality control. Flour from malting barley varieties is a valuable ingredient in the food industry, but its use is restricted due to quality aspects such as color variations and the presence of husk fragments. On the other hand...
Autores principales: | Lopes, Jessica Fernandes, Ludwig, Leniza, Barbin, Douglas Fernandes, Grossmann, Maria Victória Eiras, Barbon, Sylvio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650935/ https://www.ncbi.nlm.nih.gov/pubmed/31277468 http://dx.doi.org/10.3390/s19132953 |
Ejemplares similares
-
Quality Assessment of Cookies Made from Composite Flours Containing Malted Barley Flour and Wheat Flour
por: Jukić, Marko, et al.
Publicado: (2022) -
Association mapping of partitioning loci in barley
por: Cockram, James, et al.
Publicado: (2008) -
Deep Ensemble Learning with Atrous Spatial Pyramid Networks for Protein Secondary Structure Prediction
por: Guo, Yuzhi, et al.
Publicado: (2022) -
Comparison of nutritional properties of Stinging nettle (Urtica dioica) flour with wheat and barley flours
por: Adhikari, Bhaskar Mani, et al.
Publicado: (2015) -
Effects of Highland Barley Flour with Different Particle Sizes on the Characteristics of Reconstituted Flour and Noodles
por: Liu, Haibo, et al.
Publicado: (2023)