Cargando…
Blockade of STAT3 Signaling Contributes to Anticancer Effect of 5-Acetyloxy-6,7,8,4′-Tetra-Methoxyflavone, a Tangeretin Derivative, on Human Glioblastoma Multiforme Cells
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with poor prognosis, largely due to resistance to current radiotherapy and Temozolomide chemotherapy. The constitutive activation of Signal Transducer and Activator of Transcription 3 (STAT3) is evidenced as a pivotal driver of...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651290/ https://www.ncbi.nlm.nih.gov/pubmed/31323961 http://dx.doi.org/10.3390/ijms20133366 |
_version_ | 1783438312107671552 |
---|---|
author | Cheng, Yen-Po Li, Shiming Chuang, Wan-Ling Li, Chia-Hsuan Chen, Guan-Jun Chang, Ching-Chin Or, Chi-Hung R. Lin, Ping-Yi Chang, Chia-Che |
author_facet | Cheng, Yen-Po Li, Shiming Chuang, Wan-Ling Li, Chia-Hsuan Chen, Guan-Jun Chang, Ching-Chin Or, Chi-Hung R. Lin, Ping-Yi Chang, Chia-Che |
author_sort | Cheng, Yen-Po |
collection | PubMed |
description | Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with poor prognosis, largely due to resistance to current radiotherapy and Temozolomide chemotherapy. The constitutive activation of Signal Transducer and Activator of Transcription 3 (STAT3) is evidenced as a pivotal driver of GBM pathogenesis and therapy resistance, and hence, is a promising GBM drug target. 5-acetyloxy-6,7,8,4′-tetramethoxyflavone (5-AcTMF) is an acetylated derivative of Tangeretin which is known to exert anticancer effects on breast, colon, lung, and multiple myeloma; however, its effect on GBM remains elusive. Herein, we reported that 5-AcTMF suppressed the viability and clonogenicity along with inducing apoptosis in multiple human GBM cell lines. Mechanistic analyses further revealed that 5-AcTMF lowered the levels of Tyrosine 705-phosphorylated STAT3 (p-STAT3), a canonical marker of STAT3 activation, but also dampened p-STAT3 upregulation elicited by Interleukin-6. Notably, ectopic expression of dominant-active STAT3 impeded 5-AcTMF-induced suppression of viability and clonogenicity plus apoptosis induction in GBM cells, confirming the prerequisite of STAT3 blockage for the inhibitory action of 5-AcTMF on GBM cell survival and growth. Additionally, 5-AcTMF impaired the activation of STAT3 upstream kinase JAK2 but also downregulated antiapoptotic BCL-2 and BCL-xL in a STAT3-dependent manner. Moreover, the overexpression of either BCL-2 or BCL-xL abrogated 5-AcTMF-mediated viability reduction and apoptosis induction in GBM cells. Collectively, we, for the first time, revealed the anticancer effect of 5-AcTMF on GBM cells, which was executed via thwarting the JAK2-STAT3-BCL-2/BCL-xL signaling axis. Our findings further implicate the therapeutic potential of 5-AcTMF for GBM treatment. |
format | Online Article Text |
id | pubmed-6651290 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66512902019-08-08 Blockade of STAT3 Signaling Contributes to Anticancer Effect of 5-Acetyloxy-6,7,8,4′-Tetra-Methoxyflavone, a Tangeretin Derivative, on Human Glioblastoma Multiforme Cells Cheng, Yen-Po Li, Shiming Chuang, Wan-Ling Li, Chia-Hsuan Chen, Guan-Jun Chang, Ching-Chin Or, Chi-Hung R. Lin, Ping-Yi Chang, Chia-Che Int J Mol Sci Article Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with poor prognosis, largely due to resistance to current radiotherapy and Temozolomide chemotherapy. The constitutive activation of Signal Transducer and Activator of Transcription 3 (STAT3) is evidenced as a pivotal driver of GBM pathogenesis and therapy resistance, and hence, is a promising GBM drug target. 5-acetyloxy-6,7,8,4′-tetramethoxyflavone (5-AcTMF) is an acetylated derivative of Tangeretin which is known to exert anticancer effects on breast, colon, lung, and multiple myeloma; however, its effect on GBM remains elusive. Herein, we reported that 5-AcTMF suppressed the viability and clonogenicity along with inducing apoptosis in multiple human GBM cell lines. Mechanistic analyses further revealed that 5-AcTMF lowered the levels of Tyrosine 705-phosphorylated STAT3 (p-STAT3), a canonical marker of STAT3 activation, but also dampened p-STAT3 upregulation elicited by Interleukin-6. Notably, ectopic expression of dominant-active STAT3 impeded 5-AcTMF-induced suppression of viability and clonogenicity plus apoptosis induction in GBM cells, confirming the prerequisite of STAT3 blockage for the inhibitory action of 5-AcTMF on GBM cell survival and growth. Additionally, 5-AcTMF impaired the activation of STAT3 upstream kinase JAK2 but also downregulated antiapoptotic BCL-2 and BCL-xL in a STAT3-dependent manner. Moreover, the overexpression of either BCL-2 or BCL-xL abrogated 5-AcTMF-mediated viability reduction and apoptosis induction in GBM cells. Collectively, we, for the first time, revealed the anticancer effect of 5-AcTMF on GBM cells, which was executed via thwarting the JAK2-STAT3-BCL-2/BCL-xL signaling axis. Our findings further implicate the therapeutic potential of 5-AcTMF for GBM treatment. MDPI 2019-07-09 /pmc/articles/PMC6651290/ /pubmed/31323961 http://dx.doi.org/10.3390/ijms20133366 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cheng, Yen-Po Li, Shiming Chuang, Wan-Ling Li, Chia-Hsuan Chen, Guan-Jun Chang, Ching-Chin Or, Chi-Hung R. Lin, Ping-Yi Chang, Chia-Che Blockade of STAT3 Signaling Contributes to Anticancer Effect of 5-Acetyloxy-6,7,8,4′-Tetra-Methoxyflavone, a Tangeretin Derivative, on Human Glioblastoma Multiforme Cells |
title | Blockade of STAT3 Signaling Contributes to Anticancer Effect of 5-Acetyloxy-6,7,8,4′-Tetra-Methoxyflavone, a Tangeretin Derivative, on Human Glioblastoma Multiforme Cells |
title_full | Blockade of STAT3 Signaling Contributes to Anticancer Effect of 5-Acetyloxy-6,7,8,4′-Tetra-Methoxyflavone, a Tangeretin Derivative, on Human Glioblastoma Multiforme Cells |
title_fullStr | Blockade of STAT3 Signaling Contributes to Anticancer Effect of 5-Acetyloxy-6,7,8,4′-Tetra-Methoxyflavone, a Tangeretin Derivative, on Human Glioblastoma Multiforme Cells |
title_full_unstemmed | Blockade of STAT3 Signaling Contributes to Anticancer Effect of 5-Acetyloxy-6,7,8,4′-Tetra-Methoxyflavone, a Tangeretin Derivative, on Human Glioblastoma Multiforme Cells |
title_short | Blockade of STAT3 Signaling Contributes to Anticancer Effect of 5-Acetyloxy-6,7,8,4′-Tetra-Methoxyflavone, a Tangeretin Derivative, on Human Glioblastoma Multiforme Cells |
title_sort | blockade of stat3 signaling contributes to anticancer effect of 5-acetyloxy-6,7,8,4′-tetra-methoxyflavone, a tangeretin derivative, on human glioblastoma multiforme cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651290/ https://www.ncbi.nlm.nih.gov/pubmed/31323961 http://dx.doi.org/10.3390/ijms20133366 |
work_keys_str_mv | AT chengyenpo blockadeofstat3signalingcontributestoanticancereffectof5acetyloxy6784tetramethoxyflavoneatangeretinderivativeonhumanglioblastomamultiformecells AT lishiming blockadeofstat3signalingcontributestoanticancereffectof5acetyloxy6784tetramethoxyflavoneatangeretinderivativeonhumanglioblastomamultiformecells AT chuangwanling blockadeofstat3signalingcontributestoanticancereffectof5acetyloxy6784tetramethoxyflavoneatangeretinderivativeonhumanglioblastomamultiformecells AT lichiahsuan blockadeofstat3signalingcontributestoanticancereffectof5acetyloxy6784tetramethoxyflavoneatangeretinderivativeonhumanglioblastomamultiformecells AT chenguanjun blockadeofstat3signalingcontributestoanticancereffectof5acetyloxy6784tetramethoxyflavoneatangeretinderivativeonhumanglioblastomamultiformecells AT changchingchin blockadeofstat3signalingcontributestoanticancereffectof5acetyloxy6784tetramethoxyflavoneatangeretinderivativeonhumanglioblastomamultiformecells AT orchihungr blockadeofstat3signalingcontributestoanticancereffectof5acetyloxy6784tetramethoxyflavoneatangeretinderivativeonhumanglioblastomamultiformecells AT linpingyi blockadeofstat3signalingcontributestoanticancereffectof5acetyloxy6784tetramethoxyflavoneatangeretinderivativeonhumanglioblastomamultiformecells AT changchiache blockadeofstat3signalingcontributestoanticancereffectof5acetyloxy6784tetramethoxyflavoneatangeretinderivativeonhumanglioblastomamultiformecells |