Cargando…

4‐O‐methylhonokiol protects against diabetic cardiomyopathy in type 2 diabetic mice by activation of AMPK‐mediated cardiac lipid metabolism improvement

Diabetic cardiomyopathy (DCM) is characterized by increased left ventricular mass and wall thickness, decreased systolic function, reduced ejection fraction (EF) and ultimately heart failure. The 4‐O‐methylhonokiol (MH) has been isolated mainly from the bark of the root and stem of Magnolia species....

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Zongyu, Ma, Tianjiao, Guo, Hua, Kim, Ki Soo, Kim, Kyoung Tae, Bi, Liqi, Zhang, Zhiguo, Cai, Lu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6653553/
https://www.ncbi.nlm.nih.gov/pubmed/31199069
http://dx.doi.org/10.1111/jcmm.14493
Descripción
Sumario:Diabetic cardiomyopathy (DCM) is characterized by increased left ventricular mass and wall thickness, decreased systolic function, reduced ejection fraction (EF) and ultimately heart failure. The 4‐O‐methylhonokiol (MH) has been isolated mainly from the bark of the root and stem of Magnolia species. In this study, we aimed to elucidate whether MH can effectively prevent DCM in type 2 diabetic (T2D) mice and, if so, whether the protective response of MH is associated with its activation of AMPK‐mediated inhibition of lipid accumulation and inflammation. A total number of 40 mice were divided into four groups: Ctrl, Ctrl + MH, T2D, T2D + MH. Five mice from each group were sacrificed after 3‐month MH treatment. The remaining animals in each group were kept for additional 3 months without further MH treatment. In T2D mice, the typical DCM symptoms were induced as expected, reflected by decreased ejection fraction and lipotoxic effects inducing lipid accumulation, oxidative stress, inflammatory reactions, and final fibrosis. However, these typical DCM changes were significantly prevented by the MH treatment immediately or 3 months after the 3‐month MH treatment, suggesting MH‐induced cardiac protection from T2D had a memory effect. Mechanistically, MH cardiac protection from DCM may be associated with its lipid metabolism improvement by the activation of AMPK/CPT1‐mediated fatty acid oxidation. In addition, the MH treatment of DCM mice significantly improved their insulin resistance levels by activation of GSK‐3β. These results indicate that the treatment of T2D with MH effectively prevents DCM probably via AMPK‐dependent improvement of the lipid metabolism.