Cargando…
Optimization of Molecules via Deep Reinforcement Learning
We present a framework, which we call Molecule Deep Q-Networks (MolDQN), for molecule optimization by combining domain knowledge of chemistry and state-of-the-art reinforcement learning techniques (double Q-learning and randomized value functions). We directly define modifications on molecules, ther...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6656766/ https://www.ncbi.nlm.nih.gov/pubmed/31341196 http://dx.doi.org/10.1038/s41598-019-47148-x |