Cargando…
Optimization of Molecules via Deep Reinforcement Learning
We present a framework, which we call Molecule Deep Q-Networks (MolDQN), for molecule optimization by combining domain knowledge of chemistry and state-of-the-art reinforcement learning techniques (double Q-learning and randomized value functions). We directly define modifications on molecules, ther...
Autores principales: | Zhou, Zhenpeng, Kearnes, Steven, Li, Li, Zare, Richard N., Riley, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6656766/ https://www.ncbi.nlm.nih.gov/pubmed/31341196 http://dx.doi.org/10.1038/s41598-019-47148-x |
Ejemplares similares
-
Author Correction: Optimization of Molecules via Deep Reinforcement Learning
por: Zhou, Zhenpeng, et al.
Publicado: (2020) -
Optimizing Chemical Reactions with Deep Reinforcement Learning
por: Zhou, Zhenpeng, et al.
Publicado: (2017) -
Diversity oriented Deep Reinforcement Learning for targeted molecule generation
por: Pereira, Tiago, et al.
Publicado: (2021) -
An Optimization Method for Non-IID Federated Learning Based on Deep Reinforcement Learning
por: Meng, Xutao, et al.
Publicado: (2023) -
Deep reinforcement learning for optimal experimental design in biology
por: Treloar, Neythen J., et al.
Publicado: (2022)