Cargando…
Microscopy examination of red blood and yeast cell agglutination induced by bacterial lectins
Lectins are a group of ubiquitous proteins which specifically recognize and reversibly bind sugar moieties of glycoprotein and glycolipid constituents on cell surfaces. The mutagenesis approach is often employed to characterize lectin binding properties. As lectins are not enzymes, it is not easy to...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6657890/ https://www.ncbi.nlm.nih.gov/pubmed/31344098 http://dx.doi.org/10.1371/journal.pone.0220318 |
_version_ | 1783438866261213184 |
---|---|
author | Mrázková, Jana Malinovská, Lenka Wimmerová, Michaela |
author_facet | Mrázková, Jana Malinovská, Lenka Wimmerová, Michaela |
author_sort | Mrázková, Jana |
collection | PubMed |
description | Lectins are a group of ubiquitous proteins which specifically recognize and reversibly bind sugar moieties of glycoprotein and glycolipid constituents on cell surfaces. The mutagenesis approach is often employed to characterize lectin binding properties. As lectins are not enzymes, it is not easy to perform a rapid specificity screening of mutants using chromogenic substrates. It is necessary to use different binding assays such as isothermal titration calorimetry (ITC), surface plasmon resonance (SPR), microscale thermophoresis (MST), enzyme-linked lectin assays (ELLA), or glycan arrays for their characterization. These methods often require fluorescently labeled proteins (MST), highly purified proteins (SPR) or high protein concentrations (ITC). Mutant proteins may often exhibit problematic behaviour, such as poor solubility or low stability. Lectin-based cell agglutination is a simple and low-cost technique which can overcome most of these problems. In this work, a modified method of the agglutination of human erythrocytes and yeast cells with microscopy detection was successfully used for a specificity study of the newly prepared mutant lectin RS-IIL_A22S, which experimentally completed studies on sugar preferences of lectins in the PA-IIL family. Results showed that the sensitivity of this method is comparable with ITC, is able to determine subtle differences in lectin specificity, and works directly in cell lysates. The agglutination method with microscopy detection was validated by comparison of the results with results obtained by agglutination assay in standard 96-well microtiter plate format. In contrast to this assay, the microscopic method can clearly distinguish between hemagglutination and hemolysis. Therefore, this method is suitable for examination of lectins with known hemolytic activity as well as mutant or uncharacterized lectins, which could damage red blood cells. This is due to the experimental arrangement, which includes very short sample incubation time in combination with microscopic detection of agglutinates, that are easily observed by a small portable microscope. |
format | Online Article Text |
id | pubmed-6657890 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-66578902019-08-07 Microscopy examination of red blood and yeast cell agglutination induced by bacterial lectins Mrázková, Jana Malinovská, Lenka Wimmerová, Michaela PLoS One Research Article Lectins are a group of ubiquitous proteins which specifically recognize and reversibly bind sugar moieties of glycoprotein and glycolipid constituents on cell surfaces. The mutagenesis approach is often employed to characterize lectin binding properties. As lectins are not enzymes, it is not easy to perform a rapid specificity screening of mutants using chromogenic substrates. It is necessary to use different binding assays such as isothermal titration calorimetry (ITC), surface plasmon resonance (SPR), microscale thermophoresis (MST), enzyme-linked lectin assays (ELLA), or glycan arrays for their characterization. These methods often require fluorescently labeled proteins (MST), highly purified proteins (SPR) or high protein concentrations (ITC). Mutant proteins may often exhibit problematic behaviour, such as poor solubility or low stability. Lectin-based cell agglutination is a simple and low-cost technique which can overcome most of these problems. In this work, a modified method of the agglutination of human erythrocytes and yeast cells with microscopy detection was successfully used for a specificity study of the newly prepared mutant lectin RS-IIL_A22S, which experimentally completed studies on sugar preferences of lectins in the PA-IIL family. Results showed that the sensitivity of this method is comparable with ITC, is able to determine subtle differences in lectin specificity, and works directly in cell lysates. The agglutination method with microscopy detection was validated by comparison of the results with results obtained by agglutination assay in standard 96-well microtiter plate format. In contrast to this assay, the microscopic method can clearly distinguish between hemagglutination and hemolysis. Therefore, this method is suitable for examination of lectins with known hemolytic activity as well as mutant or uncharacterized lectins, which could damage red blood cells. This is due to the experimental arrangement, which includes very short sample incubation time in combination with microscopic detection of agglutinates, that are easily observed by a small portable microscope. Public Library of Science 2019-07-25 /pmc/articles/PMC6657890/ /pubmed/31344098 http://dx.doi.org/10.1371/journal.pone.0220318 Text en © 2019 Mrázková et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Mrázková, Jana Malinovská, Lenka Wimmerová, Michaela Microscopy examination of red blood and yeast cell agglutination induced by bacterial lectins |
title | Microscopy examination of red blood and yeast cell agglutination induced by bacterial lectins |
title_full | Microscopy examination of red blood and yeast cell agglutination induced by bacterial lectins |
title_fullStr | Microscopy examination of red blood and yeast cell agglutination induced by bacterial lectins |
title_full_unstemmed | Microscopy examination of red blood and yeast cell agglutination induced by bacterial lectins |
title_short | Microscopy examination of red blood and yeast cell agglutination induced by bacterial lectins |
title_sort | microscopy examination of red blood and yeast cell agglutination induced by bacterial lectins |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6657890/ https://www.ncbi.nlm.nih.gov/pubmed/31344098 http://dx.doi.org/10.1371/journal.pone.0220318 |
work_keys_str_mv | AT mrazkovajana microscopyexaminationofredbloodandyeastcellagglutinationinducedbybacteriallectins AT malinovskalenka microscopyexaminationofredbloodandyeastcellagglutinationinducedbybacteriallectins AT wimmerovamichaela microscopyexaminationofredbloodandyeastcellagglutinationinducedbybacteriallectins |