Cargando…

SAE1 promotes human glioma progression through activating AKT SUMOylation-mediated signaling pathways

BACKGROUND: The SUMO-activating enzyme SAE1 is indispensable for protein SUMOylation. A dysregulation of SAE1 expression involves in progression of several human cancers. However, its biological roles of SAE1 in glioma are unclear by now. METHODS: The differential proteome between human glioma tissu...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yanfang, Liang, Ziwei, Xia, Zijing, Wang, Xixi, Ma, Yanni, Sheng, Zenghua, Gu, Qingjia, Shen, Guobo, Zhou, Liangxue, Zhu, Hongxia, Xu, Ningzhi, Liang, Shufang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6659289/
https://www.ncbi.nlm.nih.gov/pubmed/31345225
http://dx.doi.org/10.1186/s12964-019-0392-9
Descripción
Sumario:BACKGROUND: The SUMO-activating enzyme SAE1 is indispensable for protein SUMOylation. A dysregulation of SAE1 expression involves in progression of several human cancers. However, its biological roles of SAE1 in glioma are unclear by now. METHODS: The differential proteome between human glioma tissues and para-cancerous brain tissues were identified by LC-MS/MS. SAE1 expression was further assessed by immunohistochemistry. The patient overall survival versus SAE1 expression level was evaluated by Kaplan–Meier method. The glioma cell growth and migration were evaluated under SAE1 overexpression or inhibition by the CCK8, transwell assay and wound healing analysis. The SUMO1 modified target proteins were enriched from total cellular or tissue proteins by incubation with the anti-SUMO1 antibody on protein-A beads overnight, then the SUMOylated proteins were detected by Western blot. Cell apoptosis and cell cycle were analyzed by flow cytometry. The nude mouse xenograft was determined glioma growth and tumorigenicity in vivo. RESULTS: SAE1 is identified to increase in glioma tissues by a quantitative proteomic dissection, and SAE1 upregulation indicates a high level of tumor malignancy grade and a poor overall survival for glioma patients. SAE1 overexpression induces an increase of the SUMOylation and Ser473 phosphorylation of AKT, which promotes glioma cell growth in vitro and in nude mouse tumor model. On the contrary, SAE1 silence induces an obvious suppression of the SUMOylation and Ser473 phosphorylation of Akt, which inhibits glioma cell proliferation and the tumor xenograft growth through inducing cell cycle arrest at G2 phase and cell apoptosis driven by serial biochemical molecular events. CONCLUSION: SAE1 promotes glioma cancer progression via enhancing Akt SUMOylation-mediated signaling pathway, which indicates targeting SUMOylation is a promising therapeutic strategy for human glioma. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12964-019-0392-9) contains supplementary material, which is available to authorized users.