Sodium butyrate interrupts the maturation of oocytes and enhances the development of preimplantation embryos
Histone acetylation is one of the most important posttranslational modifications that contribute to transcriptional initiation and chromatin remodeling. In the present study, we aimed to investigate the effect of sodium butyrate (NaBu), a natural histone deacetylase inhibitor (HDACi), on the maturat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6663018/ https://www.ncbi.nlm.nih.gov/pubmed/31356635 http://dx.doi.org/10.1371/journal.pone.0220479 |
_version_ | 1783439751746945024 |
---|---|
author | Yu, Meng-Fei Wang, Ju-Long Yi, Jian-Ming Ma, Lin |
author_facet | Yu, Meng-Fei Wang, Ju-Long Yi, Jian-Ming Ma, Lin |
author_sort | Yu, Meng-Fei |
collection | PubMed |
description | Histone acetylation is one of the most important posttranslational modifications that contribute to transcriptional initiation and chromatin remodeling. In the present study, we aimed to investigate the effect of sodium butyrate (NaBu), a natural histone deacetylase inhibitor (HDACi), on the maturation of oocytes, preimplantation embryonic development, and expression of important developmental genes. The results indicated that NaBu decreased the rates of GVBD and the first polar body extrusion (PBE) in vitro in a dose-dependent manner. Meanwhile, NaBu treatment led to an abnormality in the spindle apparatus in oocytes in MI. However, the ratio of phosphor-extracellular signal-regulated kinases (p-ERK)/ERK significantly decreased in oocytes treated with 2.0 mM NaBu for 8 h. Furthermore, NaBu treatment at 2.0 mM improved the quality of embryos and the mRNA expression levels of important developmental genes such as HDAC1, Sox2, and Pou5f1. These data suggest that although a high concentration NaBu will impede the meiosis of oocytes, 2.0 mM NaBu will promote the development of embryos in vitro. Further investigation is needed to clarify the direct/indirect effects of NaBu on the regulation of important developmental genes and their subsequent impacts on full-term development in mammals. |
format | Online Article Text |
id | pubmed-6663018 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-66630182019-08-07 Sodium butyrate interrupts the maturation of oocytes and enhances the development of preimplantation embryos Yu, Meng-Fei Wang, Ju-Long Yi, Jian-Ming Ma, Lin PLoS One Research Article Histone acetylation is one of the most important posttranslational modifications that contribute to transcriptional initiation and chromatin remodeling. In the present study, we aimed to investigate the effect of sodium butyrate (NaBu), a natural histone deacetylase inhibitor (HDACi), on the maturation of oocytes, preimplantation embryonic development, and expression of important developmental genes. The results indicated that NaBu decreased the rates of GVBD and the first polar body extrusion (PBE) in vitro in a dose-dependent manner. Meanwhile, NaBu treatment led to an abnormality in the spindle apparatus in oocytes in MI. However, the ratio of phosphor-extracellular signal-regulated kinases (p-ERK)/ERK significantly decreased in oocytes treated with 2.0 mM NaBu for 8 h. Furthermore, NaBu treatment at 2.0 mM improved the quality of embryos and the mRNA expression levels of important developmental genes such as HDAC1, Sox2, and Pou5f1. These data suggest that although a high concentration NaBu will impede the meiosis of oocytes, 2.0 mM NaBu will promote the development of embryos in vitro. Further investigation is needed to clarify the direct/indirect effects of NaBu on the regulation of important developmental genes and their subsequent impacts on full-term development in mammals. Public Library of Science 2019-07-29 /pmc/articles/PMC6663018/ /pubmed/31356635 http://dx.doi.org/10.1371/journal.pone.0220479 Text en © 2019 Yu et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Yu, Meng-Fei Wang, Ju-Long Yi, Jian-Ming Ma, Lin Sodium butyrate interrupts the maturation of oocytes and enhances the development of preimplantation embryos |
title | Sodium butyrate interrupts the maturation of oocytes and enhances the development of preimplantation embryos |
title_full | Sodium butyrate interrupts the maturation of oocytes and enhances the development of preimplantation embryos |
title_fullStr | Sodium butyrate interrupts the maturation of oocytes and enhances the development of preimplantation embryos |
title_full_unstemmed | Sodium butyrate interrupts the maturation of oocytes and enhances the development of preimplantation embryos |
title_short | Sodium butyrate interrupts the maturation of oocytes and enhances the development of preimplantation embryos |
title_sort | sodium butyrate interrupts the maturation of oocytes and enhances the development of preimplantation embryos |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6663018/ https://www.ncbi.nlm.nih.gov/pubmed/31356635 http://dx.doi.org/10.1371/journal.pone.0220479 |
work_keys_str_mv | AT yumengfei sodiumbutyrateinterruptsthematurationofoocytesandenhancesthedevelopmentofpreimplantationembryos AT wangjulong sodiumbutyrateinterruptsthematurationofoocytesandenhancesthedevelopmentofpreimplantationembryos AT yijianming sodiumbutyrateinterruptsthematurationofoocytesandenhancesthedevelopmentofpreimplantationembryos AT malin sodiumbutyrateinterruptsthematurationofoocytesandenhancesthedevelopmentofpreimplantationembryos |