Cargando…
Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network
BACKGROUND: Understanding the phenotypic drug response on cancer cell lines plays a vital role in anti-cancer drug discovery and re-purposing. The Genomics of Drug Sensitivity in Cancer (GDSC) database provides open data for researchers in phenotypic screening to build and test their models. Previou...
Autores principales: | Liu, Pengfei, Li, Hongjian, Li, Shuai, Leung, Kwong-Sak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664725/ https://www.ncbi.nlm.nih.gov/pubmed/31357929 http://dx.doi.org/10.1186/s12859-019-2910-6 |
Ejemplares similares
-
Exploiting locational and topological overlap model to identify modules in protein interaction networks
por: Cheng, Lixin, et al.
Publicado: (2019) -
CNN-DDI: a learning-based method for predicting drug–drug interactions using convolution neural networks
por: Zhang, Chengcheng, et al.
Publicado: (2022) -
DeepDist: real-value inter-residue distance prediction with deep residual convolutional network
por: Wu, Tianqi, et al.
Publicado: (2021) -
Prediction of activity and specificity of CRISPR-Cpf1 using convolutional deep learning neural networks
por: Luo, Jiesi, et al.
Publicado: (2019) -
MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks
por: Lin, Yang-Ming, et al.
Publicado: (2019)