Cargando…
Molecular characterization and functional analysis of the Schistosoma mekongi Ca(2+)-dependent cysteine protease (calpain)
BACKGROUND: Schistosoma mekongi, which causes schistosomiasis in humans, is an important public health issue in Southeast Asia. Treatment with praziquantel is the primary method of control but emergence of praziquantel resistance requires the development of alternative drugs and vaccines. Calcium-de...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668146/ https://www.ncbi.nlm.nih.gov/pubmed/31362766 http://dx.doi.org/10.1186/s13071-019-3639-9 |
_version_ | 1783440167217922048 |
---|---|
author | Chaimon, Salisa Limpanont, Yanin Reamtong, Onrapak Ampawong, Sumate Phuphisut, Orawan Chusongsang, Phiraphol Ruangsittichai, Jiraporn Boonyuen, Usa Watthanakulpanich, Dorn O’Donoghue, Anthony J. Caffrey, Conor R. Adisakwattana, Poom |
author_facet | Chaimon, Salisa Limpanont, Yanin Reamtong, Onrapak Ampawong, Sumate Phuphisut, Orawan Chusongsang, Phiraphol Ruangsittichai, Jiraporn Boonyuen, Usa Watthanakulpanich, Dorn O’Donoghue, Anthony J. Caffrey, Conor R. Adisakwattana, Poom |
author_sort | Chaimon, Salisa |
collection | PubMed |
description | BACKGROUND: Schistosoma mekongi, which causes schistosomiasis in humans, is an important public health issue in Southeast Asia. Treatment with praziquantel is the primary method of control but emergence of praziquantel resistance requires the development of alternative drugs and vaccines. Calcium-dependent cysteine protease (calpain) is a novel vaccine candidate that has been studied in S. mansoni, S. japonicum, and protozoans including malaria, leishmania and trypanosomes. However, limited information is available on the properties and functions of calpain in other Schistosoma spp., including S. mekongi. In this study, we functionally characterized calpain 1 of S. mekongi (SmeCalp1). RESULTS: Calpain 1 of S. mekongi was obtained from transcriptomic analysis of S. mekongi; it had the highest expression level of all isoforms tested and was predominantly expressed in the adult male. SmeCalp1 cDNA is 2274 bp long and encodes 758 amino acids, with 85% to 90% homology with calpains in other Schistosoma species. Recombinant SmeCalp1 (rSmeCalp1), with a molecular weight of approximately 86.7 kDa, was expressed in bacteria and stimulated a marked antibody response in mice. Native SmeCalp1 was detected in crude worm extract and excretory-secretory product, and it was mainly localized in the tegument of the adult male; less signal was detected in the adult female worm. Thus, SmeCalp1 may play a role in surface membrane synthesis or host–parasite interaction. We assessed the protease activity of rSmeCalp1 and demonstrated that rSmeCalp1 could cleave the calpain substrate N-succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin, that was inhibited by calpain inhibitors (MDL28170 and E64c). Additionally, rSmeCalp1 could degrade the biological substrates fibronectin (blood clotting protein) and human complement C3, indicating important roles in the intravascular system and in host immune evasion. CONCLUSIONS: SmeCalp1 is expressed on the tegumental surface of the parasite and can cleave host defense molecules; thus, it might participate in growth, development and survival during the entire life-cycle of S. mekongi. Information on the properties and functions of SmeCalp1 reported herein will be advantageous in the development of effective drugs and vaccines against S. mekongi and other schistosomes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13071-019-3639-9) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6668146 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-66681462019-08-05 Molecular characterization and functional analysis of the Schistosoma mekongi Ca(2+)-dependent cysteine protease (calpain) Chaimon, Salisa Limpanont, Yanin Reamtong, Onrapak Ampawong, Sumate Phuphisut, Orawan Chusongsang, Phiraphol Ruangsittichai, Jiraporn Boonyuen, Usa Watthanakulpanich, Dorn O’Donoghue, Anthony J. Caffrey, Conor R. Adisakwattana, Poom Parasit Vectors Research BACKGROUND: Schistosoma mekongi, which causes schistosomiasis in humans, is an important public health issue in Southeast Asia. Treatment with praziquantel is the primary method of control but emergence of praziquantel resistance requires the development of alternative drugs and vaccines. Calcium-dependent cysteine protease (calpain) is a novel vaccine candidate that has been studied in S. mansoni, S. japonicum, and protozoans including malaria, leishmania and trypanosomes. However, limited information is available on the properties and functions of calpain in other Schistosoma spp., including S. mekongi. In this study, we functionally characterized calpain 1 of S. mekongi (SmeCalp1). RESULTS: Calpain 1 of S. mekongi was obtained from transcriptomic analysis of S. mekongi; it had the highest expression level of all isoforms tested and was predominantly expressed in the adult male. SmeCalp1 cDNA is 2274 bp long and encodes 758 amino acids, with 85% to 90% homology with calpains in other Schistosoma species. Recombinant SmeCalp1 (rSmeCalp1), with a molecular weight of approximately 86.7 kDa, was expressed in bacteria and stimulated a marked antibody response in mice. Native SmeCalp1 was detected in crude worm extract and excretory-secretory product, and it was mainly localized in the tegument of the adult male; less signal was detected in the adult female worm. Thus, SmeCalp1 may play a role in surface membrane synthesis or host–parasite interaction. We assessed the protease activity of rSmeCalp1 and demonstrated that rSmeCalp1 could cleave the calpain substrate N-succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin, that was inhibited by calpain inhibitors (MDL28170 and E64c). Additionally, rSmeCalp1 could degrade the biological substrates fibronectin (blood clotting protein) and human complement C3, indicating important roles in the intravascular system and in host immune evasion. CONCLUSIONS: SmeCalp1 is expressed on the tegumental surface of the parasite and can cleave host defense molecules; thus, it might participate in growth, development and survival during the entire life-cycle of S. mekongi. Information on the properties and functions of SmeCalp1 reported herein will be advantageous in the development of effective drugs and vaccines against S. mekongi and other schistosomes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13071-019-3639-9) contains supplementary material, which is available to authorized users. BioMed Central 2019-07-30 /pmc/articles/PMC6668146/ /pubmed/31362766 http://dx.doi.org/10.1186/s13071-019-3639-9 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Chaimon, Salisa Limpanont, Yanin Reamtong, Onrapak Ampawong, Sumate Phuphisut, Orawan Chusongsang, Phiraphol Ruangsittichai, Jiraporn Boonyuen, Usa Watthanakulpanich, Dorn O’Donoghue, Anthony J. Caffrey, Conor R. Adisakwattana, Poom Molecular characterization and functional analysis of the Schistosoma mekongi Ca(2+)-dependent cysteine protease (calpain) |
title | Molecular characterization and functional analysis of the Schistosoma mekongi Ca(2+)-dependent cysteine protease (calpain) |
title_full | Molecular characterization and functional analysis of the Schistosoma mekongi Ca(2+)-dependent cysteine protease (calpain) |
title_fullStr | Molecular characterization and functional analysis of the Schistosoma mekongi Ca(2+)-dependent cysteine protease (calpain) |
title_full_unstemmed | Molecular characterization and functional analysis of the Schistosoma mekongi Ca(2+)-dependent cysteine protease (calpain) |
title_short | Molecular characterization and functional analysis of the Schistosoma mekongi Ca(2+)-dependent cysteine protease (calpain) |
title_sort | molecular characterization and functional analysis of the schistosoma mekongi ca(2+)-dependent cysteine protease (calpain) |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668146/ https://www.ncbi.nlm.nih.gov/pubmed/31362766 http://dx.doi.org/10.1186/s13071-019-3639-9 |
work_keys_str_mv | AT chaimonsalisa molecularcharacterizationandfunctionalanalysisoftheschistosomamekongica2dependentcysteineproteasecalpain AT limpanontyanin molecularcharacterizationandfunctionalanalysisoftheschistosomamekongica2dependentcysteineproteasecalpain AT reamtongonrapak molecularcharacterizationandfunctionalanalysisoftheschistosomamekongica2dependentcysteineproteasecalpain AT ampawongsumate molecularcharacterizationandfunctionalanalysisoftheschistosomamekongica2dependentcysteineproteasecalpain AT phuphisutorawan molecularcharacterizationandfunctionalanalysisoftheschistosomamekongica2dependentcysteineproteasecalpain AT chusongsangphiraphol molecularcharacterizationandfunctionalanalysisoftheschistosomamekongica2dependentcysteineproteasecalpain AT ruangsittichaijiraporn molecularcharacterizationandfunctionalanalysisoftheschistosomamekongica2dependentcysteineproteasecalpain AT boonyuenusa molecularcharacterizationandfunctionalanalysisoftheschistosomamekongica2dependentcysteineproteasecalpain AT watthanakulpanichdorn molecularcharacterizationandfunctionalanalysisoftheschistosomamekongica2dependentcysteineproteasecalpain AT odonoghueanthonyj molecularcharacterizationandfunctionalanalysisoftheschistosomamekongica2dependentcysteineproteasecalpain AT caffreyconorr molecularcharacterizationandfunctionalanalysisoftheschistosomamekongica2dependentcysteineproteasecalpain AT adisakwattanapoom molecularcharacterizationandfunctionalanalysisoftheschistosomamekongica2dependentcysteineproteasecalpain |