Cargando…
How unmeasured confounding in a competing risks setting can affect treatment effect estimates in observational studies
BACKGROUND: Analysis of competing risks is commonly achieved through a cause specific or a subdistribution framework using Cox or Fine & Gray models, respectively. The estimation of treatment effects in observational data is prone to unmeasured confounding which causes bias. There has been limit...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668192/ https://www.ncbi.nlm.nih.gov/pubmed/31366331 http://dx.doi.org/10.1186/s12874-019-0808-7 |