Cargando…
How unmeasured confounding in a competing risks setting can affect treatment effect estimates in observational studies
BACKGROUND: Analysis of competing risks is commonly achieved through a cause specific or a subdistribution framework using Cox or Fine & Gray models, respectively. The estimation of treatment effects in observational data is prone to unmeasured confounding which causes bias. There has been limit...
Autores principales: | Barrowman, Michael Andrew, Peek, Niels, Lambie, Mark, Martin, Glen Philip, Sperrin, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668192/ https://www.ncbi.nlm.nih.gov/pubmed/31366331 http://dx.doi.org/10.1186/s12874-019-0808-7 |
Ejemplares similares
-
Quantifying the impact of unmeasured confounding in observational studies with the E value
por: Gaster, Tobias, et al.
Publicado: (2023) -
The ACCE method: an approach for obtaining quantitative or qualitative estimates of residual confounding that includes unmeasured confounding
por: Smith, Eric G.
Publicado: (2015) -
A new method to address unmeasured confounding of mortality in observational studies
por: Tannen, Richard, et al.
Publicado: (2016) -
Sensitivity Analysis for Unmeasured Confounding in Meta-Analyses
por: Mathur, Maya B., et al.
Publicado: (2019) -
Adjustment for unmeasured confounding through informative priors for the confounder-outcome relation
por: Groenwold, Rolf H. H., et al.
Publicado: (2018)