Cargando…
Lights Out! Nano-Scale Topography Imaging of Sample Surface in Opaque Liquid Environments with Coated Active Cantilever Probes
Atomic force microscopy is a powerful topography imaging method used widely in nanoscale metrology and manipulation. A conventional Atomic Force Microscope (AFM) utilizes an optical lever system typically composed of a laser source, lenses and a four quadrant photodetector to amplify and measure the...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669515/ https://www.ncbi.nlm.nih.gov/pubmed/31337145 http://dx.doi.org/10.3390/nano9071013 |
_version_ | 1783440388657250304 |
---|---|
author | Xia, Fangzhou Yang, Chen Wang, Yi Youcef-Toumi, Kamal Reuter, Christoph Ivanov, Tzvetan Holz, Mathias Rangelow, Ivo W. |
author_facet | Xia, Fangzhou Yang, Chen Wang, Yi Youcef-Toumi, Kamal Reuter, Christoph Ivanov, Tzvetan Holz, Mathias Rangelow, Ivo W. |
author_sort | Xia, Fangzhou |
collection | PubMed |
description | Atomic force microscopy is a powerful topography imaging method used widely in nanoscale metrology and manipulation. A conventional Atomic Force Microscope (AFM) utilizes an optical lever system typically composed of a laser source, lenses and a four quadrant photodetector to amplify and measure the deflection of the cantilever probe. This optical method for deflection sensing limits the capability of AFM to obtaining images in transparent environments only. In addition, tapping mode imaging in liquid environments with transparent sample chamber can be difficult for laser-probe alignment due to multiple different refraction indices of materials. Spurious structure resonance can be excited from piezo actuator excitation. Photothermal actuation resolves the resonance confusion but makes optical setup more complicated. In this paper, we present the design and fabrication method of coated active scanning probes with piezoresistive deflection sensing, thermomechanical actuation and thin photoresist polymer surface coating. The newly developed probes are capable of conducting topography imaging in opaque liquids without the need of an optical system. The selected coating can withstand harsh chemical environments with high acidity (e.g., 35% sulfuric acid). The probes are operated in various opaque liquid environments with a custom designed AFM system to demonstrate the imaging performance. The development of coated active probes opens up possibilities for observing samples in their native environments. |
format | Online Article Text |
id | pubmed-6669515 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66695152019-08-08 Lights Out! Nano-Scale Topography Imaging of Sample Surface in Opaque Liquid Environments with Coated Active Cantilever Probes Xia, Fangzhou Yang, Chen Wang, Yi Youcef-Toumi, Kamal Reuter, Christoph Ivanov, Tzvetan Holz, Mathias Rangelow, Ivo W. Nanomaterials (Basel) Article Atomic force microscopy is a powerful topography imaging method used widely in nanoscale metrology and manipulation. A conventional Atomic Force Microscope (AFM) utilizes an optical lever system typically composed of a laser source, lenses and a four quadrant photodetector to amplify and measure the deflection of the cantilever probe. This optical method for deflection sensing limits the capability of AFM to obtaining images in transparent environments only. In addition, tapping mode imaging in liquid environments with transparent sample chamber can be difficult for laser-probe alignment due to multiple different refraction indices of materials. Spurious structure resonance can be excited from piezo actuator excitation. Photothermal actuation resolves the resonance confusion but makes optical setup more complicated. In this paper, we present the design and fabrication method of coated active scanning probes with piezoresistive deflection sensing, thermomechanical actuation and thin photoresist polymer surface coating. The newly developed probes are capable of conducting topography imaging in opaque liquids without the need of an optical system. The selected coating can withstand harsh chemical environments with high acidity (e.g., 35% sulfuric acid). The probes are operated in various opaque liquid environments with a custom designed AFM system to demonstrate the imaging performance. The development of coated active probes opens up possibilities for observing samples in their native environments. MDPI 2019-07-14 /pmc/articles/PMC6669515/ /pubmed/31337145 http://dx.doi.org/10.3390/nano9071013 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xia, Fangzhou Yang, Chen Wang, Yi Youcef-Toumi, Kamal Reuter, Christoph Ivanov, Tzvetan Holz, Mathias Rangelow, Ivo W. Lights Out! Nano-Scale Topography Imaging of Sample Surface in Opaque Liquid Environments with Coated Active Cantilever Probes |
title | Lights Out! Nano-Scale Topography Imaging of Sample Surface in Opaque Liquid Environments with Coated Active Cantilever Probes |
title_full | Lights Out! Nano-Scale Topography Imaging of Sample Surface in Opaque Liquid Environments with Coated Active Cantilever Probes |
title_fullStr | Lights Out! Nano-Scale Topography Imaging of Sample Surface in Opaque Liquid Environments with Coated Active Cantilever Probes |
title_full_unstemmed | Lights Out! Nano-Scale Topography Imaging of Sample Surface in Opaque Liquid Environments with Coated Active Cantilever Probes |
title_short | Lights Out! Nano-Scale Topography Imaging of Sample Surface in Opaque Liquid Environments with Coated Active Cantilever Probes |
title_sort | lights out! nano-scale topography imaging of sample surface in opaque liquid environments with coated active cantilever probes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669515/ https://www.ncbi.nlm.nih.gov/pubmed/31337145 http://dx.doi.org/10.3390/nano9071013 |
work_keys_str_mv | AT xiafangzhou lightsoutnanoscaletopographyimagingofsamplesurfaceinopaqueliquidenvironmentswithcoatedactivecantileverprobes AT yangchen lightsoutnanoscaletopographyimagingofsamplesurfaceinopaqueliquidenvironmentswithcoatedactivecantileverprobes AT wangyi lightsoutnanoscaletopographyimagingofsamplesurfaceinopaqueliquidenvironmentswithcoatedactivecantileverprobes AT youceftoumikamal lightsoutnanoscaletopographyimagingofsamplesurfaceinopaqueliquidenvironmentswithcoatedactivecantileverprobes AT reuterchristoph lightsoutnanoscaletopographyimagingofsamplesurfaceinopaqueliquidenvironmentswithcoatedactivecantileverprobes AT ivanovtzvetan lightsoutnanoscaletopographyimagingofsamplesurfaceinopaqueliquidenvironmentswithcoatedactivecantileverprobes AT holzmathias lightsoutnanoscaletopographyimagingofsamplesurfaceinopaqueliquidenvironmentswithcoatedactivecantileverprobes AT rangelowivow lightsoutnanoscaletopographyimagingofsamplesurfaceinopaqueliquidenvironmentswithcoatedactivecantileverprobes |