Cargando…

Conformational diversity induces nanosecond-timescale chemical disorder in the HIV-1 protease reaction pathway

The role of conformational diversity in enzyme catalysis has been a matter of analysis in recent studies. Pre-organization of the active site has been pointed out as the major source for enzymes' catalytic power. Following this line of thought, it is becoming clear that specific, instantaneous,...

Descripción completa

Detalles Bibliográficos
Autores principales: Calixto, Ana Rita, Ramos, Maria João, Fernandes, Pedro Alexandrino
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6677113/
https://www.ncbi.nlm.nih.gov/pubmed/31588289
http://dx.doi.org/10.1039/c9sc01464k
_version_ 1783440888562712576
author Calixto, Ana Rita
Ramos, Maria João
Fernandes, Pedro Alexandrino
author_facet Calixto, Ana Rita
Ramos, Maria João
Fernandes, Pedro Alexandrino
author_sort Calixto, Ana Rita
collection PubMed
description The role of conformational diversity in enzyme catalysis has been a matter of analysis in recent studies. Pre-organization of the active site has been pointed out as the major source for enzymes' catalytic power. Following this line of thought, it is becoming clear that specific, instantaneous, non-rare enzyme conformations that make the active site perfectly pre-organized for the reaction lead to the lowest activation barriers that mostly contribute to the macroscopically observed reaction rate. The present work is focused on exploring the relationship between structure and catalysis in HIV-1 protease (PR) with an adiabatic mapping method, starting from different initial structures, collected from a classical MD simulation. The first, rate-limiting step of the HIV-1 PR catalytic mechanism was studied with the ONIOM QM/MM methodology (B3LYP/6-31G(d):ff99SB), with activation and reaction energies calculated at the M06-2X/6-311++G(2d,2p):ff99SB level of theory, in 19 different enzyme:substrate conformations. The results showed that the instantaneous enzyme conformations have two independent consequences on the enzyme's chemistry: they influence the barrier height, something also observed in the past in other enzymes, and they also influence the specific reaction pathway, which is something unusual and unexpected, challenging the “one enzyme–one substrate–one reaction mechanism” paradigm. Two different reaction mechanisms, with similar reactant probabilities and barrier heights, lead to the same gem-diol intermediate. Subtle nanosecond-timescale rearrangements in the active site hydrogen bonding network were shown to determine which reaction the enzyme follows. We named this phenomenon chemical disorder. The results make us realize the unexpected mechanistic consequences of conformational diversity in enzymatic reactivity.
format Online
Article
Text
id pubmed-6677113
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-66771132019-10-04 Conformational diversity induces nanosecond-timescale chemical disorder in the HIV-1 protease reaction pathway Calixto, Ana Rita Ramos, Maria João Fernandes, Pedro Alexandrino Chem Sci Chemistry The role of conformational diversity in enzyme catalysis has been a matter of analysis in recent studies. Pre-organization of the active site has been pointed out as the major source for enzymes' catalytic power. Following this line of thought, it is becoming clear that specific, instantaneous, non-rare enzyme conformations that make the active site perfectly pre-organized for the reaction lead to the lowest activation barriers that mostly contribute to the macroscopically observed reaction rate. The present work is focused on exploring the relationship between structure and catalysis in HIV-1 protease (PR) with an adiabatic mapping method, starting from different initial structures, collected from a classical MD simulation. The first, rate-limiting step of the HIV-1 PR catalytic mechanism was studied with the ONIOM QM/MM methodology (B3LYP/6-31G(d):ff99SB), with activation and reaction energies calculated at the M06-2X/6-311++G(2d,2p):ff99SB level of theory, in 19 different enzyme:substrate conformations. The results showed that the instantaneous enzyme conformations have two independent consequences on the enzyme's chemistry: they influence the barrier height, something also observed in the past in other enzymes, and they also influence the specific reaction pathway, which is something unusual and unexpected, challenging the “one enzyme–one substrate–one reaction mechanism” paradigm. Two different reaction mechanisms, with similar reactant probabilities and barrier heights, lead to the same gem-diol intermediate. Subtle nanosecond-timescale rearrangements in the active site hydrogen bonding network were shown to determine which reaction the enzyme follows. We named this phenomenon chemical disorder. The results make us realize the unexpected mechanistic consequences of conformational diversity in enzymatic reactivity. Royal Society of Chemistry 2019-06-11 /pmc/articles/PMC6677113/ /pubmed/31588289 http://dx.doi.org/10.1039/c9sc01464k Text en This journal is © The Royal Society of Chemistry 2019 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0)
spellingShingle Chemistry
Calixto, Ana Rita
Ramos, Maria João
Fernandes, Pedro Alexandrino
Conformational diversity induces nanosecond-timescale chemical disorder in the HIV-1 protease reaction pathway
title Conformational diversity induces nanosecond-timescale chemical disorder in the HIV-1 protease reaction pathway
title_full Conformational diversity induces nanosecond-timescale chemical disorder in the HIV-1 protease reaction pathway
title_fullStr Conformational diversity induces nanosecond-timescale chemical disorder in the HIV-1 protease reaction pathway
title_full_unstemmed Conformational diversity induces nanosecond-timescale chemical disorder in the HIV-1 protease reaction pathway
title_short Conformational diversity induces nanosecond-timescale chemical disorder in the HIV-1 protease reaction pathway
title_sort conformational diversity induces nanosecond-timescale chemical disorder in the hiv-1 protease reaction pathway
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6677113/
https://www.ncbi.nlm.nih.gov/pubmed/31588289
http://dx.doi.org/10.1039/c9sc01464k
work_keys_str_mv AT calixtoanarita conformationaldiversityinducesnanosecondtimescalechemicaldisorderinthehiv1proteasereactionpathway
AT ramosmariajoao conformationaldiversityinducesnanosecondtimescalechemicaldisorderinthehiv1proteasereactionpathway
AT fernandespedroalexandrino conformationaldiversityinducesnanosecondtimescalechemicaldisorderinthehiv1proteasereactionpathway