Cargando…

Activation of Cryptic 3′ Splice-Sites by SRSF2 Contributes to Cassette Exon Skipping

Here we show that the serine/arginine rich splicing factor 2 (SRSF2) promotes cryptic 3′ splice-site (3′AG′) usage during cassette exon exclusion in survival of motor neuron (SMN2) minigenes. Deletion of the 3′AG′ (3′AG′1), its associated branch point (BP′) and polypyrimidine tract (PPT′) sequences...

Descripción completa

Detalles Bibliográficos
Autores principales: Moon, Heegyum, Jang, Ha Na, Liu, Yongchao, Choi, Namjeong, Oh, Jagyeong, Ha, Jiyeon, Zheng, Xuexiu, Shen, Haihong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678912/
https://www.ncbi.nlm.nih.gov/pubmed/31295920
http://dx.doi.org/10.3390/cells8070696
Descripción
Sumario:Here we show that the serine/arginine rich splicing factor 2 (SRSF2) promotes cryptic 3′ splice-site (3′AG′) usage during cassette exon exclusion in survival of motor neuron (SMN2) minigenes. Deletion of the 3′AG′ (3′AG′1), its associated branch point (BP′) and polypyrimidine tract (PPT′) sequences directs SRSF2 to promote a second 3′AG′ (3′AG′2) with less conserved associated region for intron splicing. Furthermore, deletion of both 3′AG′1 and 3′AG′2 and their associated sequences triggered usage of a third 3′AG′3 that has very weak associated sequences. Interestingly, when intron splicing was directed to the 3′AG′ cryptic splice-sites, intron splicing from the canonical 3′AG splice-site was reduced along with a decrease in cassette exon inclusion. Moreover, multiple SRSF2 binding sites within the intron are responsible for 3′AG′ activation. We conclude that SRSF2 facilitates exon exclusion by activating a cryptic 3′AG′ and inhibiting downstream intron splicing.