Cargando…

Enantioselective Protonation of Radical Anion Intermediates in Photoallylation and Photoreduction Reactions of 3,3-Diaryl-1,1-dicyano-2-methylprop-1-ene with Allyltrimethylsilane

Photoreactions of acetonitrile solutions of 3,3-diaryl-1,1-dicyano-2-methylprop-1-enes (1a–c) with allyltrimethylsilane (2) in the presence of phenanthrene as a photoredox catalyst and acetic acid as a proton source formed photoallylation (3) and photoreduction (4) products via photoinduced electron...

Descripción completa

Detalles Bibliográficos
Autores principales: Maeda, Hajime, Iida, Masayuki, Ogawa, Daisuke, Mizuno, Kazuhiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680834/
https://www.ncbi.nlm.nih.gov/pubmed/31340614
http://dx.doi.org/10.3390/molecules24142677
Descripción
Sumario:Photoreactions of acetonitrile solutions of 3,3-diaryl-1,1-dicyano-2-methylprop-1-enes (1a–c) with allyltrimethylsilane (2) in the presence of phenanthrene as a photoredox catalyst and acetic acid as a proton source formed photoallylation (3) and photoreduction (4) products via photoinduced electron transfer pathways. When (S)-mandelic acid was used as the proton source, the reactions proceeded with 3.4 and 4.8 %ee for formation of 3 and 4, respectively. The results of studies of the effect of aryl ring substituents and several chiral carboxylic acids suggested that the enantioselectivities of the reactions are governed by steric controlled proton transfer in intermediate complexes formed by π-π and OH-π interactions of anion radicals derived from 1a–c and chiral carboxylic acids.