Cargando…
NAD(+)‐Dependent Enzymatic Route for the Epimerization of Hydroxysteroids
Epimerization of cholic and chenodeoxycholic acid (CA and CDCA, respectively) is a notable conversion for the production of ursodeoxycholic acid (UDCA). Two enantiocomplementary hydroxysteroid dehydrogenases (7α‐ and 7β‐HSDHs) can carry out this transformation fully selectively by specific oxidation...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681466/ https://www.ncbi.nlm.nih.gov/pubmed/30265441 http://dx.doi.org/10.1002/cssc.201801862 |
_version_ | 1783441734201507840 |
---|---|
author | Tonin, Fabio Otten, Linda G. Arends, Isabel W. C. E. |
author_facet | Tonin, Fabio Otten, Linda G. Arends, Isabel W. C. E. |
author_sort | Tonin, Fabio |
collection | PubMed |
description | Epimerization of cholic and chenodeoxycholic acid (CA and CDCA, respectively) is a notable conversion for the production of ursodeoxycholic acid (UDCA). Two enantiocomplementary hydroxysteroid dehydrogenases (7α‐ and 7β‐HSDHs) can carry out this transformation fully selectively by specific oxidation of the 7α‐OH group of the substrate and subsequent reduction of the keto intermediate to the final product (7β‐OH). With a view to developing robust and active biocatalysts, novel NADH‐active 7β‐HSDH species are necessary to enable a solely NAD(+)‐dependent redox‐neutral cascade for UDCA production. A wild‐type NADH‐dependent 7β‐HSDH from Lactobacillus spicheri (Ls7β‐HSDH) was identified, recombinantly expressed, purified, and biochemically characterized. Using this novel NAD(+)‐dependent 7β‐HSDH enzyme in combination with 7α‐HSDH from Stenotrophomonas maltophilia permitted the biotransformations of CA and CDCA in the presence of catalytic amounts of NAD(+), resulting in high yields (>90 %) of UCA and UDCA. |
format | Online Article Text |
id | pubmed-6681466 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-66814662019-08-09 NAD(+)‐Dependent Enzymatic Route for the Epimerization of Hydroxysteroids Tonin, Fabio Otten, Linda G. Arends, Isabel W. C. E. ChemSusChem Full Papers Epimerization of cholic and chenodeoxycholic acid (CA and CDCA, respectively) is a notable conversion for the production of ursodeoxycholic acid (UDCA). Two enantiocomplementary hydroxysteroid dehydrogenases (7α‐ and 7β‐HSDHs) can carry out this transformation fully selectively by specific oxidation of the 7α‐OH group of the substrate and subsequent reduction of the keto intermediate to the final product (7β‐OH). With a view to developing robust and active biocatalysts, novel NADH‐active 7β‐HSDH species are necessary to enable a solely NAD(+)‐dependent redox‐neutral cascade for UDCA production. A wild‐type NADH‐dependent 7β‐HSDH from Lactobacillus spicheri (Ls7β‐HSDH) was identified, recombinantly expressed, purified, and biochemically characterized. Using this novel NAD(+)‐dependent 7β‐HSDH enzyme in combination with 7α‐HSDH from Stenotrophomonas maltophilia permitted the biotransformations of CA and CDCA in the presence of catalytic amounts of NAD(+), resulting in high yields (>90 %) of UCA and UDCA. John Wiley and Sons Inc. 2018-11-05 2019-07-05 /pmc/articles/PMC6681466/ /pubmed/30265441 http://dx.doi.org/10.1002/cssc.201801862 Text en © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Full Papers Tonin, Fabio Otten, Linda G. Arends, Isabel W. C. E. NAD(+)‐Dependent Enzymatic Route for the Epimerization of Hydroxysteroids |
title | NAD(+)‐Dependent Enzymatic Route for the Epimerization of Hydroxysteroids |
title_full | NAD(+)‐Dependent Enzymatic Route for the Epimerization of Hydroxysteroids |
title_fullStr | NAD(+)‐Dependent Enzymatic Route for the Epimerization of Hydroxysteroids |
title_full_unstemmed | NAD(+)‐Dependent Enzymatic Route for the Epimerization of Hydroxysteroids |
title_short | NAD(+)‐Dependent Enzymatic Route for the Epimerization of Hydroxysteroids |
title_sort | nad(+)‐dependent enzymatic route for the epimerization of hydroxysteroids |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681466/ https://www.ncbi.nlm.nih.gov/pubmed/30265441 http://dx.doi.org/10.1002/cssc.201801862 |
work_keys_str_mv | AT toninfabio naddependentenzymaticroutefortheepimerizationofhydroxysteroids AT ottenlindag naddependentenzymaticroutefortheepimerizationofhydroxysteroids AT arendsisabelwce naddependentenzymaticroutefortheepimerizationofhydroxysteroids |