Cargando…
Modeling Spatiotemporal Factors Associated With Sentiment on Twitter: Synthesis and Suggestions for Improving the Identification of Localized Deviations
BACKGROUND: Studies examining how sentiment on social media varies depending on timing and location appear to produce inconsistent results, making it hard to design systems that use sentiment to detect localized events for public health applications. OBJECTIVE: The aim of this study was to measure h...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682275/ https://www.ncbi.nlm.nih.gov/pubmed/31344669 http://dx.doi.org/10.2196/12881 |