Cargando…

Genetic polymorphisms and transcription profiles associated with intracranial aneurysm: a key role for NOTCH3

Intracranial aneurysm (IA) incidence is about 1~2%. However, the specific mechanisms of IA onset and development need further study. Our objective was to discover novel IA-related genes to determine possible etiologies further. We performed next-generation sequencing on nineteen Chinese patients wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Mengqi, Dong, Xinlong, Chen, Shi, Wang, Weihan, Yang, Chao, Li, Bochuan, Liang, Degang, Yang, Weidong, Liu, Xiaozhi, Yang, Xinyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682524/
https://www.ncbi.nlm.nih.gov/pubmed/31339861
http://dx.doi.org/10.18632/aging.102111
Descripción
Sumario:Intracranial aneurysm (IA) incidence is about 1~2%. However, the specific mechanisms of IA onset and development need further study. Our objective was to discover novel IA-related genes to determine possible etiologies further. We performed next-generation sequencing on nineteen Chinese patients with familial IA and one patient with sporadic IA. We obtained mRNA expression data of 129 samples from Gene Expression Omnibus (GEO) and made statistical computing to discover differentially expressed genes (DEGs). The screened IA-related gene NOTCH3 was determined by bioinformatic data mining. We verified the IA-related indicators of NOTCH3. Association was found between IA and the NOTCH3 SNPs rs779314594, rs200504060 and rs2285981. Levels of NOTCH3 mRNA were lower in IA tissue than in control tissue, but higher in peripheral blood neutrophils from IA patients than in neutrophils from controls. Levels of NOTCH3 protein were lower in IA tissue than in cerebral artery tissue. NOTCH3 also decreased the expression of angiogenesis factors in human umbilical vein endothelial cells. Variation in NOTCH3 and alteration of its expression in cerebral artery or neutrophils may contribute to IA. Our findings also describe a bioinformatic-experimental approach that may prove useful for probing the pathophysiology of other complex diseases.