Cargando…
Doxorubicin-Induced Cardiotoxicity in Collaborative Cross (CC) Mice Recapitulates Individual Cardiotoxicity in Humans
Anthracyclines cause progressive cardiotoxicity whose ultimate severity is individual to the patient. Genetic determinants contributing to this variation are difficult to study using current mouse models. Our objective was to determine whether a spectrum of anthracycline induced cardiac disease can...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686936/ https://www.ncbi.nlm.nih.gov/pubmed/31263061 http://dx.doi.org/10.1534/g3.119.400232 |
_version_ | 1783442644817412096 |
---|---|
author | Zeiss, Caroline J. Gatti, Daniel M. Toro-Salazar, Olga Davis, Crystal Lutz, Cathleen M. Spinale, Francis Stearns, Timothy Furtado, Milena B. Churchill, Gary A. |
author_facet | Zeiss, Caroline J. Gatti, Daniel M. Toro-Salazar, Olga Davis, Crystal Lutz, Cathleen M. Spinale, Francis Stearns, Timothy Furtado, Milena B. Churchill, Gary A. |
author_sort | Zeiss, Caroline J. |
collection | PubMed |
description | Anthracyclines cause progressive cardiotoxicity whose ultimate severity is individual to the patient. Genetic determinants contributing to this variation are difficult to study using current mouse models. Our objective was to determine whether a spectrum of anthracycline induced cardiac disease can be elicited across 10 Collaborative Cross mouse strains given the same dose of doxorubicin. Mice from ten distinct strains were given 5 mg/kg of doxorubicin intravenously once weekly for 5 weeks (total 25 mg/kg). Mice were killed at acute or chronic timepoints. Body weight was assessed weekly, followed by terminal complete blood count, pathology and a panel of biomarkers. Linear models were fit to assess effects of treatment, sex, and sex-by-treatment interactions for each timepoint. Impaired growth and cardiac pathology occurred across all strains. Severity of these varied by strain and sex, with greater severity in males. Cardiac troponin I and myosin light chain 3 demonstrated strain- and sex-specific elevations in the acute phase with subsequent decline despite ongoing progression of cardiac disease. Acute phase cardiac troponin I levels predicted the ultimate severity of cardiac pathology poorly, whereas myosin light chain 3 levels predicted the extent of chronic cardiac injury in males. Strain- and sex-dependent renal toxicity was evident. Regenerative anemia manifested during the acute period. We confirm that variable susceptibility to doxorubicin-induced cardiotoxicity observed in humans can be modeled in a panel of CC strains. In addition, we identified a potential predictive biomarker in males. CC strains provide reproducible models to explore mechanisms contributing to individual susceptibility in humans. |
format | Online Article Text |
id | pubmed-6686936 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Genetics Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-66869362019-08-11 Doxorubicin-Induced Cardiotoxicity in Collaborative Cross (CC) Mice Recapitulates Individual Cardiotoxicity in Humans Zeiss, Caroline J. Gatti, Daniel M. Toro-Salazar, Olga Davis, Crystal Lutz, Cathleen M. Spinale, Francis Stearns, Timothy Furtado, Milena B. Churchill, Gary A. G3 (Bethesda) Investigations Anthracyclines cause progressive cardiotoxicity whose ultimate severity is individual to the patient. Genetic determinants contributing to this variation are difficult to study using current mouse models. Our objective was to determine whether a spectrum of anthracycline induced cardiac disease can be elicited across 10 Collaborative Cross mouse strains given the same dose of doxorubicin. Mice from ten distinct strains were given 5 mg/kg of doxorubicin intravenously once weekly for 5 weeks (total 25 mg/kg). Mice were killed at acute or chronic timepoints. Body weight was assessed weekly, followed by terminal complete blood count, pathology and a panel of biomarkers. Linear models were fit to assess effects of treatment, sex, and sex-by-treatment interactions for each timepoint. Impaired growth and cardiac pathology occurred across all strains. Severity of these varied by strain and sex, with greater severity in males. Cardiac troponin I and myosin light chain 3 demonstrated strain- and sex-specific elevations in the acute phase with subsequent decline despite ongoing progression of cardiac disease. Acute phase cardiac troponin I levels predicted the ultimate severity of cardiac pathology poorly, whereas myosin light chain 3 levels predicted the extent of chronic cardiac injury in males. Strain- and sex-dependent renal toxicity was evident. Regenerative anemia manifested during the acute period. We confirm that variable susceptibility to doxorubicin-induced cardiotoxicity observed in humans can be modeled in a panel of CC strains. In addition, we identified a potential predictive biomarker in males. CC strains provide reproducible models to explore mechanisms contributing to individual susceptibility in humans. Genetics Society of America 2019-07-01 /pmc/articles/PMC6686936/ /pubmed/31263061 http://dx.doi.org/10.1534/g3.119.400232 Text en Copyright © 2019 Zeiss et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Investigations Zeiss, Caroline J. Gatti, Daniel M. Toro-Salazar, Olga Davis, Crystal Lutz, Cathleen M. Spinale, Francis Stearns, Timothy Furtado, Milena B. Churchill, Gary A. Doxorubicin-Induced Cardiotoxicity in Collaborative Cross (CC) Mice Recapitulates Individual Cardiotoxicity in Humans |
title | Doxorubicin-Induced Cardiotoxicity in Collaborative Cross (CC) Mice Recapitulates Individual Cardiotoxicity in Humans |
title_full | Doxorubicin-Induced Cardiotoxicity in Collaborative Cross (CC) Mice Recapitulates Individual Cardiotoxicity in Humans |
title_fullStr | Doxorubicin-Induced Cardiotoxicity in Collaborative Cross (CC) Mice Recapitulates Individual Cardiotoxicity in Humans |
title_full_unstemmed | Doxorubicin-Induced Cardiotoxicity in Collaborative Cross (CC) Mice Recapitulates Individual Cardiotoxicity in Humans |
title_short | Doxorubicin-Induced Cardiotoxicity in Collaborative Cross (CC) Mice Recapitulates Individual Cardiotoxicity in Humans |
title_sort | doxorubicin-induced cardiotoxicity in collaborative cross (cc) mice recapitulates individual cardiotoxicity in humans |
topic | Investigations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686936/ https://www.ncbi.nlm.nih.gov/pubmed/31263061 http://dx.doi.org/10.1534/g3.119.400232 |
work_keys_str_mv | AT zeisscarolinej doxorubicininducedcardiotoxicityincollaborativecrossccmicerecapitulatesindividualcardiotoxicityinhumans AT gattidanielm doxorubicininducedcardiotoxicityincollaborativecrossccmicerecapitulatesindividualcardiotoxicityinhumans AT torosalazarolga doxorubicininducedcardiotoxicityincollaborativecrossccmicerecapitulatesindividualcardiotoxicityinhumans AT daviscrystal doxorubicininducedcardiotoxicityincollaborativecrossccmicerecapitulatesindividualcardiotoxicityinhumans AT lutzcathleenm doxorubicininducedcardiotoxicityincollaborativecrossccmicerecapitulatesindividualcardiotoxicityinhumans AT spinalefrancis doxorubicininducedcardiotoxicityincollaborativecrossccmicerecapitulatesindividualcardiotoxicityinhumans AT stearnstimothy doxorubicininducedcardiotoxicityincollaborativecrossccmicerecapitulatesindividualcardiotoxicityinhumans AT furtadomilenab doxorubicininducedcardiotoxicityincollaborativecrossccmicerecapitulatesindividualcardiotoxicityinhumans AT churchillgarya doxorubicininducedcardiotoxicityincollaborativecrossccmicerecapitulatesindividualcardiotoxicityinhumans |