Cargando…

BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors

PURPOSE: Breast cancer (BC) risk prediction allows systematic identification of individuals at highest and lowest risk. We extend the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) risk model to incorporate the effects of polygenic risk scores (PRS) and...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Andrew, Mavaddat, Nasim, Wilcox, Amber N., Cunningham, Alex P., Carver, Tim, Hartley, Simon, Babb de Villiers, Chantal, Izquierdo, Angel, Simard, Jacques, Schmidt, Marjanka K., Walter, Fiona M., Chatterjee, Nilanjan, Garcia-Closas, Montserrat, Tischkowitz, Marc, Pharoah, Paul, Easton, Douglas F., Antoniou, Antonis C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687499/
https://www.ncbi.nlm.nih.gov/pubmed/30643217
http://dx.doi.org/10.1038/s41436-018-0406-9
_version_ 1783442737007165440
author Lee, Andrew
Mavaddat, Nasim
Wilcox, Amber N.
Cunningham, Alex P.
Carver, Tim
Hartley, Simon
Babb de Villiers, Chantal
Izquierdo, Angel
Simard, Jacques
Schmidt, Marjanka K.
Walter, Fiona M.
Chatterjee, Nilanjan
Garcia-Closas, Montserrat
Tischkowitz, Marc
Pharoah, Paul
Easton, Douglas F.
Antoniou, Antonis C.
author_facet Lee, Andrew
Mavaddat, Nasim
Wilcox, Amber N.
Cunningham, Alex P.
Carver, Tim
Hartley, Simon
Babb de Villiers, Chantal
Izquierdo, Angel
Simard, Jacques
Schmidt, Marjanka K.
Walter, Fiona M.
Chatterjee, Nilanjan
Garcia-Closas, Montserrat
Tischkowitz, Marc
Pharoah, Paul
Easton, Douglas F.
Antoniou, Antonis C.
author_sort Lee, Andrew
collection PubMed
description PURPOSE: Breast cancer (BC) risk prediction allows systematic identification of individuals at highest and lowest risk. We extend the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) risk model to incorporate the effects of polygenic risk scores (PRS) and other risk factors (RFs). METHODS: BOADICEA incorporates the effects of truncating variants in BRCA1, BRCA2, PALB2, CHEK2, and ATM; a PRS based on 313 single-nucleotide polymorphisms (SNPs) explaining 20% of BC polygenic variance; a residual polygenic component accounting for other genetic/familial effects; known lifestyle/hormonal/reproductive RFs; and mammographic density, while allowing for missing information. RESULTS: Among all factors considered, the predicted UK BC risk distribution is widest for the PRS, followed by mammographic density. The highest BC risk stratification is achieved when all genetic and lifestyle/hormonal/reproductive/anthropomorphic factors are considered jointly. With all factors, the predicted lifetime risks for women in the UK population vary from 2.8% for the 1st percentile to 30.6% for the 99th percentile, with 14.7% of women predicted to have a lifetime risk of ≥17–<30% (moderate risk according to National Institute for Health and Care Excellence [NICE] guidelines) and 1.1% a lifetime risk of ≥30% (high risk). CONCLUSION: This comprehensive model should enable high levels of BC risk stratification in the general population and women with family history, and facilitate individualized, informed decision-making on prevention therapies and screening.
format Online
Article
Text
id pubmed-6687499
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-66874992019-08-08 BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors Lee, Andrew Mavaddat, Nasim Wilcox, Amber N. Cunningham, Alex P. Carver, Tim Hartley, Simon Babb de Villiers, Chantal Izquierdo, Angel Simard, Jacques Schmidt, Marjanka K. Walter, Fiona M. Chatterjee, Nilanjan Garcia-Closas, Montserrat Tischkowitz, Marc Pharoah, Paul Easton, Douglas F. Antoniou, Antonis C. Genet Med Article PURPOSE: Breast cancer (BC) risk prediction allows systematic identification of individuals at highest and lowest risk. We extend the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) risk model to incorporate the effects of polygenic risk scores (PRS) and other risk factors (RFs). METHODS: BOADICEA incorporates the effects of truncating variants in BRCA1, BRCA2, PALB2, CHEK2, and ATM; a PRS based on 313 single-nucleotide polymorphisms (SNPs) explaining 20% of BC polygenic variance; a residual polygenic component accounting for other genetic/familial effects; known lifestyle/hormonal/reproductive RFs; and mammographic density, while allowing for missing information. RESULTS: Among all factors considered, the predicted UK BC risk distribution is widest for the PRS, followed by mammographic density. The highest BC risk stratification is achieved when all genetic and lifestyle/hormonal/reproductive/anthropomorphic factors are considered jointly. With all factors, the predicted lifetime risks for women in the UK population vary from 2.8% for the 1st percentile to 30.6% for the 99th percentile, with 14.7% of women predicted to have a lifetime risk of ≥17–<30% (moderate risk according to National Institute for Health and Care Excellence [NICE] guidelines) and 1.1% a lifetime risk of ≥30% (high risk). CONCLUSION: This comprehensive model should enable high levels of BC risk stratification in the general population and women with family history, and facilitate individualized, informed decision-making on prevention therapies and screening. Nature Publishing Group US 2019-01-15 2019 /pmc/articles/PMC6687499/ /pubmed/30643217 http://dx.doi.org/10.1038/s41436-018-0406-9 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
spellingShingle Article
Lee, Andrew
Mavaddat, Nasim
Wilcox, Amber N.
Cunningham, Alex P.
Carver, Tim
Hartley, Simon
Babb de Villiers, Chantal
Izquierdo, Angel
Simard, Jacques
Schmidt, Marjanka K.
Walter, Fiona M.
Chatterjee, Nilanjan
Garcia-Closas, Montserrat
Tischkowitz, Marc
Pharoah, Paul
Easton, Douglas F.
Antoniou, Antonis C.
BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors
title BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors
title_full BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors
title_fullStr BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors
title_full_unstemmed BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors
title_short BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors
title_sort boadicea: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687499/
https://www.ncbi.nlm.nih.gov/pubmed/30643217
http://dx.doi.org/10.1038/s41436-018-0406-9
work_keys_str_mv AT leeandrew boadiceaacomprehensivebreastcancerriskpredictionmodelincorporatinggeneticandnongeneticriskfactors
AT mavaddatnasim boadiceaacomprehensivebreastcancerriskpredictionmodelincorporatinggeneticandnongeneticriskfactors
AT wilcoxambern boadiceaacomprehensivebreastcancerriskpredictionmodelincorporatinggeneticandnongeneticriskfactors
AT cunninghamalexp boadiceaacomprehensivebreastcancerriskpredictionmodelincorporatinggeneticandnongeneticriskfactors
AT carvertim boadiceaacomprehensivebreastcancerriskpredictionmodelincorporatinggeneticandnongeneticriskfactors
AT hartleysimon boadiceaacomprehensivebreastcancerriskpredictionmodelincorporatinggeneticandnongeneticriskfactors
AT babbdevillierschantal boadiceaacomprehensivebreastcancerriskpredictionmodelincorporatinggeneticandnongeneticriskfactors
AT izquierdoangel boadiceaacomprehensivebreastcancerriskpredictionmodelincorporatinggeneticandnongeneticriskfactors
AT simardjacques boadiceaacomprehensivebreastcancerriskpredictionmodelincorporatinggeneticandnongeneticriskfactors
AT schmidtmarjankak boadiceaacomprehensivebreastcancerriskpredictionmodelincorporatinggeneticandnongeneticriskfactors
AT walterfionam boadiceaacomprehensivebreastcancerriskpredictionmodelincorporatinggeneticandnongeneticriskfactors
AT chatterjeenilanjan boadiceaacomprehensivebreastcancerriskpredictionmodelincorporatinggeneticandnongeneticriskfactors
AT garciaclosasmontserrat boadiceaacomprehensivebreastcancerriskpredictionmodelincorporatinggeneticandnongeneticriskfactors
AT tischkowitzmarc boadiceaacomprehensivebreastcancerriskpredictionmodelincorporatinggeneticandnongeneticriskfactors
AT pharoahpaul boadiceaacomprehensivebreastcancerriskpredictionmodelincorporatinggeneticandnongeneticriskfactors
AT eastondouglasf boadiceaacomprehensivebreastcancerriskpredictionmodelincorporatinggeneticandnongeneticriskfactors
AT antoniouantonisc boadiceaacomprehensivebreastcancerriskpredictionmodelincorporatinggeneticandnongeneticriskfactors