Cargando…

The essential elements for the noncovalent association of two DNA ends during NHEJ synapsis

One of the most central questions about the repair of a double-strand DNA break (DSB) concerns how the two free DNA ends are brought together — a step called synapsis. Using single-molecule FRET (smFRET), we show here that both Ku plus XRCC4:DNA ligase IV are necessary and sufficient to achieve a fl...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Bailin, Watanabe, Go, Morten, Michael J., Reid, Dylan A., Rothenberg, Eli, Lieber, Michael R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6688983/
https://www.ncbi.nlm.nih.gov/pubmed/31399561
http://dx.doi.org/10.1038/s41467-019-11507-z
Descripción
Sumario:One of the most central questions about the repair of a double-strand DNA break (DSB) concerns how the two free DNA ends are brought together — a step called synapsis. Using single-molecule FRET (smFRET), we show here that both Ku plus XRCC4:DNA ligase IV are necessary and sufficient to achieve a flexible synapsis of blunt DNA ends, whereas either alone is not. Addition of XLF causes a transition to a close synaptic state, and maximum efficiency of close synapsis is achieved within 20 min. The promotion of close synapsis by XLF indicates a role that is independent of a filament structure, with action focused at the very ends of each duplex. DNA-PKcs is not required for the formation of either the flexible or close synaptic states. This model explains in biochemical terms the evolutionarily central synaptic role of Ku, X4L4, and XLF in NHEJ for all eukaryotes.