Cargando…
Novel Cell Wall Antifungals Reveal a Special Synergistic Activity in pbr1 Mutants Resistant to the Glucan Synthesis Antifungals Papulacandins and Echinocandins
A series of 4-(arylmethylene)-3-isochromanones have been prepared with base-catalyzed Knoevenagel condensation starting from 3-isochromanone and aromatic aldehydes. The outcome of the reaction- the isomeric composition of the products depends on the aromatic aldehyde applied. These reactions afforde...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689975/ https://www.ncbi.nlm.nih.gov/pubmed/31428061 http://dx.doi.org/10.3389/fmicb.2019.01692 |
Sumario: | A series of 4-(arylmethylene)-3-isochromanones have been prepared with base-catalyzed Knoevenagel condensation starting from 3-isochromanone and aromatic aldehydes. The outcome of the reaction- the isomeric composition of the products depends on the aromatic aldehyde applied. These reactions afforded mostly the more stable E-diastereoisomer, but some condensations resulted in the Z-diastereoisomer or mixture of the stereoisomers (1–16). The products showed antifungal effect against some pathogenic fungi. We wanted to extend this study and to synthesize a new generation of 4-(arylmethylene)-3-isochromanones. These condensations led mostly to E-diastereoisomers (17–30). The structure verifications were performed by FT IR, (1)H and(13)C NMR methods. Both the 1–16 and the novel 17–30 compounds have been screened against the three yeast models, fission yeast Schizosaccharomyces pombe (wild-type, and pbr1-6 and pbr1-8 mutants resistant to specific cell wall synthesis inhibitors), budding yeast Saccharomyces cerevisiae (wild-type and pbr1-1) and pathogenic yeast Candida albicans (wild-type, ATCC 26555, 90028 and SC5314). Osmotic protection with sorbitol attenuated the in vivo inhibition in living cells suggesting a cell wall-specific antifungal effect. Moreover, the S. pombe wild-type and mutant strains were tested for their resistant or sensitive in vitro β(1,3)-glucan synthase (GS) activity. We found both in vivo in living cells and in vitro in the enzymatic GS assay a synergistic effect of higher sensitivity of the pbr1 mutants resistant to the specific GS inhibitors papulacandins and echinocandins. These results may provide new insights into new strategies of combined antifungal therapy of GS inhibitors directed against spontaneous mutants resistant to echinocandins. |
---|