Cargando…
Learning from scanners: Bias reduction and feature correction in radiomics
PURPOSE: Radiomics are quantitative features extracted from medical images. Many radiomic features depend not only on tumor properties, but also on non-tumor related factors such as scanner signal-to-noise ratio (SNR), reconstruction kernel and other image acquisition settings. This causes undesirab...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690665/ https://www.ncbi.nlm.nih.gov/pubmed/31417963 http://dx.doi.org/10.1016/j.ctro.2019.07.003 |