Cargando…
Learning from scanners: Bias reduction and feature correction in radiomics
PURPOSE: Radiomics are quantitative features extracted from medical images. Many radiomic features depend not only on tumor properties, but also on non-tumor related factors such as scanner signal-to-noise ratio (SNR), reconstruction kernel and other image acquisition settings. This causes undesirab...
Autores principales: | Zhovannik, Ivan, Bussink, Johan, Traverso, Alberto, Shi, Zhenwei, Kalendralis, Petros, Wee, Leonard, Dekker, Andre, Fijten, Rianne, Monshouwer, René |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690665/ https://www.ncbi.nlm.nih.gov/pubmed/31417963 http://dx.doi.org/10.1016/j.ctro.2019.07.003 |
Ejemplares similares
-
Distributed radiomics as a signature validation study using the Personal Health Train infrastructure
por: Shi, Zhenwei, et al.
Publicado: (2019) -
Multicenter CT phantoms public dataset for radiomics reproducibility tests
por: Kalendralis, Petros, et al.
Publicado: (2019) -
FAIR‐compliant clinical, radiomics and DICOM metadata of RIDER, interobserver, Lung1 and head‐Neck1 TCIA collections
por: Kalendralis, Petros, et al.
Publicado: (2020) -
Radiomics integration into a picture archiving and communication system
por: Zhovannik, Ivan, et al.
Publicado: (2021) -
A systematic review and quality of reporting checklist for repeatability and reproducibility of radiomic features
por: Pfaehler, Elisabeth, et al.
Publicado: (2021)