Cargando…
Deep Learning-Based Real-Time Multiple-Object Detection and Tracking from Aerial Imagery via a Flying Robot with GPU-Based Embedded Devices
In recent years, demand has been increasing for target detection and tracking from aerial imagery via drones using onboard powered sensors and devices. We propose a very effective method for this application based on a deep learning framework. A state-of-the-art embedded hardware system empowers sma...
Autores principales: | Hossain, Sabir, Lee, Deok-jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695703/ https://www.ncbi.nlm.nih.gov/pubmed/31370336 http://dx.doi.org/10.3390/s19153371 |
Ejemplares similares
-
YOLOv4 with Deformable-Embedding-Transformer Feature Extractor for Exact Object Detection in Aerial Imagery
por: Wu, Yiheng, et al.
Publicado: (2023) -
GPU-based quasi-real-time Track Recognition in Imaging Devices: from raw Data to Particle Tracks
por: Bozza, Cristiano, et al.
Publicado: (2015) -
Lightweight Object Detection Algorithm for UAV Aerial Imagery
por: Wang, Jian, et al.
Publicado: (2023) -
SenseLite: A YOLO-Based Lightweight Model for Small Object Detection in Aerial Imagery
por: Han, Tianxin, et al.
Publicado: (2023) -
Fast CNN Stereo Depth Estimation through Embedded GPU Devices
por: Aguilera, Cristhian A., et al.
Publicado: (2020)