Cargando…

Stability of an RNA•DNA–DNA triple helix depends on base triplet composition and length of the RNA third strand

Recent studies suggest noncoding RNAs interact with genomic DNA, forming an RNA•DNA–DNA triple helix that regulates gene expression. However, base triplet composition of pyrimidine motif RNA•DNA–DNA triple helices is not well understood beyond the canonical U•A–T and C•G–C base triplets. Using nativ...

Descripción completa

Detalles Bibliográficos
Autores principales: Kunkler, Charlotte N, Hulewicz, Jacob P, Hickman, Sarah C, Wang, Matthew C, McCown, Phillip J, Brown, Jessica A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698731/
https://www.ncbi.nlm.nih.gov/pubmed/31265072
http://dx.doi.org/10.1093/nar/gkz573
Descripción
Sumario:Recent studies suggest noncoding RNAs interact with genomic DNA, forming an RNA•DNA–DNA triple helix that regulates gene expression. However, base triplet composition of pyrimidine motif RNA•DNA–DNA triple helices is not well understood beyond the canonical U•A–T and C•G–C base triplets. Using native gel-shift assays, the relative stability of 16 different base triplets at a single position, Z•X–Y (where Z = C, U, A, G and X–Y = A–T, G–C, T–A, C–G), in an RNA•DNA–DNA triple helix was determined. The canonical U•A–T and C•G–C base triplets were the most stable, while three non-canonical base triplets completely disrupted triple-helix formation. We further show that our RNA•DNA–DNA triple helix can tolerate up to two consecutive non-canonical A•G–C base triplets. Additionally, the RNA third strand must be at least 19 nucleotides to form an RNA•DNA–DNA triple helix but increasing the length to 27 nucleotides does not increase stability. The relative stability of 16 different base triplets in DNA•DNA–DNA and RNA•RNA–RNA triple helices was distinctly different from those in RNA•DNA–DNA triple helices, showing that base triplet stability depends on strand composition being DNA and/or RNA. Multiple factors influence the stability of triple helices, emphasizing the importance of experimentally validating formation of computationally predicted triple helices.