Cargando…
Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies
Proteins associated with familial neurodegenerative disease often aggregate in patients’ neurons. Several such proteins, e.g. TDP-43, aggregate and are toxic when expressed in yeast. Deletion of the ATXN2 ortholog, PBP1, reduces yeast TDP-43 toxicity, which led to identification of ATXN2 as an amyot...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6699716/ https://www.ncbi.nlm.nih.gov/pubmed/31390360 http://dx.doi.org/10.1371/journal.pgen.1008308 |
_version_ | 1783444763120238592 |
---|---|
author | Park, Sangeun Park, Sei-Kyoung Watanabe, Naruaki Hashimoto, Tadafumi Iwatsubo, Takeshi Shelkovnikova, Tatyana A. Liebman, Susan W. |
author_facet | Park, Sangeun Park, Sei-Kyoung Watanabe, Naruaki Hashimoto, Tadafumi Iwatsubo, Takeshi Shelkovnikova, Tatyana A. Liebman, Susan W. |
author_sort | Park, Sangeun |
collection | PubMed |
description | Proteins associated with familial neurodegenerative disease often aggregate in patients’ neurons. Several such proteins, e.g. TDP-43, aggregate and are toxic when expressed in yeast. Deletion of the ATXN2 ortholog, PBP1, reduces yeast TDP-43 toxicity, which led to identification of ATXN2 as an amyotrophic lateral sclerosis (ALS) risk factor and therapeutic target. Likewise, new yeast neurodegenerative disease models could facilitate identification of other risk factors and targets. Mutations in SS18L1, encoding the calcium-responsive transactivator (CREST) chromatin-remodeling protein, are associated with ALS. We show that CREST is toxic in yeast and forms nuclear and occasionally cytoplasmic foci that stain with Thioflavin-T, a dye indicative of amyloid-like protein. Like the yeast chromatin-remodeling factor SWI1, CREST inhibits silencing of FLO genes. Toxicity of CREST is enhanced by the [PIN(+)] prion and reduced by deletion of the HSP104 chaperone required for the propagation of many yeast prions. Likewise, deletion of PBP1 reduced CREST toxicity and aggregation. In accord with the yeast data, we show that the Drosophila ortholog of human ATXN2, dAtx2, is a potent enhancer of CREST toxicity. Downregulation of dAtx2 in flies overexpressing CREST in retinal ganglion cells was sufficient to largely rescue the severe degenerative phenotype induced by human CREST. Overexpression caused considerable co-localization of CREST and PBP1/ATXN2 in cytoplasmic foci in both yeast and mammalian cells. Thus, co-aggregation of CREST and PBP1/ATXN2 may serve as one of the mechanisms of PBP1/ATXN2-mediated toxicity. These results extend the spectrum of ALS associated proteins whose toxicity is regulated by PBP1/ATXN2, suggesting that therapies targeting ATXN2 may be effective for a wide range of neurodegenerative diseases. |
format | Online Article Text |
id | pubmed-6699716 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-66997162019-09-04 Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies Park, Sangeun Park, Sei-Kyoung Watanabe, Naruaki Hashimoto, Tadafumi Iwatsubo, Takeshi Shelkovnikova, Tatyana A. Liebman, Susan W. PLoS Genet Research Article Proteins associated with familial neurodegenerative disease often aggregate in patients’ neurons. Several such proteins, e.g. TDP-43, aggregate and are toxic when expressed in yeast. Deletion of the ATXN2 ortholog, PBP1, reduces yeast TDP-43 toxicity, which led to identification of ATXN2 as an amyotrophic lateral sclerosis (ALS) risk factor and therapeutic target. Likewise, new yeast neurodegenerative disease models could facilitate identification of other risk factors and targets. Mutations in SS18L1, encoding the calcium-responsive transactivator (CREST) chromatin-remodeling protein, are associated with ALS. We show that CREST is toxic in yeast and forms nuclear and occasionally cytoplasmic foci that stain with Thioflavin-T, a dye indicative of amyloid-like protein. Like the yeast chromatin-remodeling factor SWI1, CREST inhibits silencing of FLO genes. Toxicity of CREST is enhanced by the [PIN(+)] prion and reduced by deletion of the HSP104 chaperone required for the propagation of many yeast prions. Likewise, deletion of PBP1 reduced CREST toxicity and aggregation. In accord with the yeast data, we show that the Drosophila ortholog of human ATXN2, dAtx2, is a potent enhancer of CREST toxicity. Downregulation of dAtx2 in flies overexpressing CREST in retinal ganglion cells was sufficient to largely rescue the severe degenerative phenotype induced by human CREST. Overexpression caused considerable co-localization of CREST and PBP1/ATXN2 in cytoplasmic foci in both yeast and mammalian cells. Thus, co-aggregation of CREST and PBP1/ATXN2 may serve as one of the mechanisms of PBP1/ATXN2-mediated toxicity. These results extend the spectrum of ALS associated proteins whose toxicity is regulated by PBP1/ATXN2, suggesting that therapies targeting ATXN2 may be effective for a wide range of neurodegenerative diseases. Public Library of Science 2019-08-07 /pmc/articles/PMC6699716/ /pubmed/31390360 http://dx.doi.org/10.1371/journal.pgen.1008308 Text en © 2019 Park et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Park, Sangeun Park, Sei-Kyoung Watanabe, Naruaki Hashimoto, Tadafumi Iwatsubo, Takeshi Shelkovnikova, Tatyana A. Liebman, Susan W. Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies |
title | Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies |
title_full | Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies |
title_fullStr | Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies |
title_full_unstemmed | Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies |
title_short | Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies |
title_sort | calcium-responsive transactivator (crest) toxicity is rescued by loss of pbp1/atxn2 function in a novel yeast proteinopathy model and in transgenic flies |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6699716/ https://www.ncbi.nlm.nih.gov/pubmed/31390360 http://dx.doi.org/10.1371/journal.pgen.1008308 |
work_keys_str_mv | AT parksangeun calciumresponsivetransactivatorcresttoxicityisrescuedbylossofpbp1atxn2functioninanovelyeastproteinopathymodelandintransgenicflies AT parkseikyoung calciumresponsivetransactivatorcresttoxicityisrescuedbylossofpbp1atxn2functioninanovelyeastproteinopathymodelandintransgenicflies AT watanabenaruaki calciumresponsivetransactivatorcresttoxicityisrescuedbylossofpbp1atxn2functioninanovelyeastproteinopathymodelandintransgenicflies AT hashimototadafumi calciumresponsivetransactivatorcresttoxicityisrescuedbylossofpbp1atxn2functioninanovelyeastproteinopathymodelandintransgenicflies AT iwatsubotakeshi calciumresponsivetransactivatorcresttoxicityisrescuedbylossofpbp1atxn2functioninanovelyeastproteinopathymodelandintransgenicflies AT shelkovnikovatatyanaa calciumresponsivetransactivatorcresttoxicityisrescuedbylossofpbp1atxn2functioninanovelyeastproteinopathymodelandintransgenicflies AT liebmansusanw calciumresponsivetransactivatorcresttoxicityisrescuedbylossofpbp1atxn2functioninanovelyeastproteinopathymodelandintransgenicflies |