Cargando…
Resolution enhancement in scanning electron microscopy using deep learning
We report resolution enhancement in scanning electron microscopy (SEM) images using a generative adversarial network. We demonstrate the veracity of this deep learning-based super-resolution technique by inferring unresolved features in low-resolution SEM images and comparing them with the accuratel...
Autores principales: | de Haan, Kevin, Ballard, Zachary S., Rivenson, Yair, Wu, Yichen, Ozcan, Aydogan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700066/ https://www.ncbi.nlm.nih.gov/pubmed/31427691 http://dx.doi.org/10.1038/s41598-019-48444-2 |
Ejemplares similares
-
Deep learning in holography and coherent imaging
por: Rivenson, Yair, et al.
Publicado: (2019) -
Deep learning-based super-resolution in coherent imaging systems
por: Liu, Tairan, et al.
Publicado: (2019) -
PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning
por: Rivenson, Yair, et al.
Publicado: (2019) -
Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram
por: Wu, Yichen, et al.
Publicado: (2019) -
Deep learning accelerates whole slide imaging for next-generation digital pathology applications
por: Rivenson, Yair, et al.
Publicado: (2022)