Cargando…

Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics

The performance of modern chips is strongly related to the multi-layer interconnect structure that interfaces the semiconductor layer with the outside world. The resulting demand to continuously reduce the k-value of the dielectric in these interconnects creates multiple integration challenges and e...

Descripción completa

Detalles Bibliográficos
Autores principales: Krishtab, Mikhail, Stassen, Ivo, Stassin, Timothée, Cruz, Alexander John, Okudur, Oguzhan Orkut, Armini, Silvia, Wilson, Chris, De Gendt, Stefan, Ameloot, Rob
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700180/
https://www.ncbi.nlm.nih.gov/pubmed/31427584
http://dx.doi.org/10.1038/s41467-019-11703-x
_version_ 1783444815176794112
author Krishtab, Mikhail
Stassen, Ivo
Stassin, Timothée
Cruz, Alexander John
Okudur, Oguzhan Orkut
Armini, Silvia
Wilson, Chris
De Gendt, Stefan
Ameloot, Rob
author_facet Krishtab, Mikhail
Stassen, Ivo
Stassin, Timothée
Cruz, Alexander John
Okudur, Oguzhan Orkut
Armini, Silvia
Wilson, Chris
De Gendt, Stefan
Ameloot, Rob
author_sort Krishtab, Mikhail
collection PubMed
description The performance of modern chips is strongly related to the multi-layer interconnect structure that interfaces the semiconductor layer with the outside world. The resulting demand to continuously reduce the k-value of the dielectric in these interconnects creates multiple integration challenges and encourages the search for novel materials. Here we report a strategy for the integration of metal-organic frameworks (MOFs) as gap-filling low-k dielectrics in advanced on-chip interconnects. The method relies on the selective conversion of purpose-grown or native metal-oxide films on the metal interconnect lines into MOFs by exposure to organic linker vapor. The proposed strategy is validated for thin films of the zeolitic imidazolate frameworks ZIF-8 and ZIF-67, formed in 2-methylimidazole vapor from ALD ZnO and native CoO(x), respectively. Both materials show a Young’s modulus and dielectric constant comparable to state-of-the-art porous organosilica dielectrics. Moreover, the fast nucleation and volume expansion accompanying the oxide-to-MOF conversion enable uniform growth and gap-filling of narrow trenches, as demonstrated for 45 nm half-pitch fork-fork capacitors.
format Online
Article
Text
id pubmed-6700180
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-67001802019-08-21 Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics Krishtab, Mikhail Stassen, Ivo Stassin, Timothée Cruz, Alexander John Okudur, Oguzhan Orkut Armini, Silvia Wilson, Chris De Gendt, Stefan Ameloot, Rob Nat Commun Article The performance of modern chips is strongly related to the multi-layer interconnect structure that interfaces the semiconductor layer with the outside world. The resulting demand to continuously reduce the k-value of the dielectric in these interconnects creates multiple integration challenges and encourages the search for novel materials. Here we report a strategy for the integration of metal-organic frameworks (MOFs) as gap-filling low-k dielectrics in advanced on-chip interconnects. The method relies on the selective conversion of purpose-grown or native metal-oxide films on the metal interconnect lines into MOFs by exposure to organic linker vapor. The proposed strategy is validated for thin films of the zeolitic imidazolate frameworks ZIF-8 and ZIF-67, formed in 2-methylimidazole vapor from ALD ZnO and native CoO(x), respectively. Both materials show a Young’s modulus and dielectric constant comparable to state-of-the-art porous organosilica dielectrics. Moreover, the fast nucleation and volume expansion accompanying the oxide-to-MOF conversion enable uniform growth and gap-filling of narrow trenches, as demonstrated for 45 nm half-pitch fork-fork capacitors. Nature Publishing Group UK 2019-08-19 /pmc/articles/PMC6700180/ /pubmed/31427584 http://dx.doi.org/10.1038/s41467-019-11703-x Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Krishtab, Mikhail
Stassen, Ivo
Stassin, Timothée
Cruz, Alexander John
Okudur, Oguzhan Orkut
Armini, Silvia
Wilson, Chris
De Gendt, Stefan
Ameloot, Rob
Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics
title Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics
title_full Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics
title_fullStr Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics
title_full_unstemmed Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics
title_short Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics
title_sort vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700180/
https://www.ncbi.nlm.nih.gov/pubmed/31427584
http://dx.doi.org/10.1038/s41467-019-11703-x
work_keys_str_mv AT krishtabmikhail vapordepositedzeoliticimidazolateframeworksasgapfillingultralowkdielectrics
AT stassenivo vapordepositedzeoliticimidazolateframeworksasgapfillingultralowkdielectrics
AT stassintimothee vapordepositedzeoliticimidazolateframeworksasgapfillingultralowkdielectrics
AT cruzalexanderjohn vapordepositedzeoliticimidazolateframeworksasgapfillingultralowkdielectrics
AT okuduroguzhanorkut vapordepositedzeoliticimidazolateframeworksasgapfillingultralowkdielectrics
AT arminisilvia vapordepositedzeoliticimidazolateframeworksasgapfillingultralowkdielectrics
AT wilsonchris vapordepositedzeoliticimidazolateframeworksasgapfillingultralowkdielectrics
AT degendtstefan vapordepositedzeoliticimidazolateframeworksasgapfillingultralowkdielectrics
AT amelootrob vapordepositedzeoliticimidazolateframeworksasgapfillingultralowkdielectrics