Cargando…
A novel CD147 inhibitor, SP-8356, reduces neointimal hyperplasia and arterial stiffness in a rat model of partial carotid artery ligation
BACKGROUND: Neointimal hyperplasia and its related arterial stiffness are the crucial pathophysiological features in atherosclerosis and in-stent restenosis. Cluster of differentiation 147 (CD147), a member of the immunoglobulin super family that induces the expression of matrix metalloproteinase-9...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700999/ https://www.ncbi.nlm.nih.gov/pubmed/31429778 http://dx.doi.org/10.1186/s12967-019-2024-y |
Sumario: | BACKGROUND: Neointimal hyperplasia and its related arterial stiffness are the crucial pathophysiological features in atherosclerosis and in-stent restenosis. Cluster of differentiation 147 (CD147), a member of the immunoglobulin super family that induces the expression of matrix metalloproteinase-9 (MMP-9) by dimerization, may play important roles in neointimal hyperplasia and may therefore be an effective target for the treatment of this condition. Here, we investigated whether a novel CD147 inhibitor SP-8356 ((1S,5R)-4-(3,4-dihydroxy-5-methoxystyryl)-6,6-dimethylbicyclo[3.1.1]hept-3-en-2-one) reduces neointimal hyperplasia and arterial stiffness in a rat model of partial carotid artery ligation. METHODS: Neointimal hyperplasia was induced in Sprague–Dawley rats by partial ligation of the right carotid artery combined with a high fat diet and vitamin D injection. Rats were subdivided into vehicle, SP-8356 (50 mg/kg), and rosuvastatin (10 mg/kg) groups. The drugs were administrated via intraperitoneal injections for 4 weeks. The elasticity of blood vessels was assessed by measuring pulse wave velocity using Doppler ultrasonography before sacrifice. Histomolecular analysis was carried out on harvested carotid arteries. RESULTS: SP-8356 significantly reduced MMP activity by inhibiting CD147 dimerization. SP-8356 reduced neointimal hyperplasia and prevented the deterioration of vascular elasticity. SP-8356 had a greater inhibitory effect on neointimal hyperplasia than did rosuvastatin. Furthermore, rosuvastatin did not improve vascular elasticity. SP-8356 increased the expression of smooth muscle myosin heavy chain (SM-MHC), but decreased the expression of collagen type III and MMP-9 in the neointimal region. In contrast to SP-8356, rosuvastatin did not alter the expression of SM-MHC or MMP-9. CONCLUSIONS: The ability of SP-8356 to reduce neointimal hyperplasia and improve arterial stiffness in affected carotid artery suggests that SP-8356 could be a promising therapeutic drug for vascular remodeling disorders involving neointimal hyperplasia and arterial stiffness. |
---|