Cargando…

Sustainable Asymmetric Organolithium Chemistry: Enantio‐ and Chemoselective Acylations through Recycling of Solvent, Sparteine, and Weinreb “Amine”

The well‐established Hoppe–Beak chemistry, which involves enantioselective generation of organolithium compounds in the presence of (−)‐sparteine, was revisited and applied to unprecedented acylations with Weinreb amides to access highly enantioenriched α‐oxyketones and cyclic α‐aminoketones. Recycl...

Descripción completa

Detalles Bibliográficos
Autores principales: Monticelli, Serena, Holzer, Wolfgang, Langer, Thierry, Roller, Alexander, Olofsson, Berit, Pace, Vittorio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704367/
https://www.ncbi.nlm.nih.gov/pubmed/30614208
http://dx.doi.org/10.1002/cssc.201802815
Descripción
Sumario:The well‐established Hoppe–Beak chemistry, which involves enantioselective generation of organolithium compounds in the presence of (−)‐sparteine, was revisited and applied to unprecedented acylations with Weinreb amides to access highly enantioenriched α‐oxyketones and cyclic α‐aminoketones. Recycling of the sustainable solvent cyclopentyl methyl ether, sparteine, and the released Weinreb “amine” [HNMe(OMe)] was possible through a simple work‐up procedure that enabled full recovery of these precious materials. The methodology features a robust scope and flexibility, thus allowing the enantioselective preparation of scaffolds amenable of further derivatization.