Cargando…

Interleukin (IL)-13 and IL-17A contribute to neo-osteogenesis in chronic rhinosinusitis by inducing RUNX2

BACKGROUND: There is increasing evidence supporting the impact of neoosteogenesis in the pathophysiology of chronic rhinosinusitis (CRS), especially in the recalcitrant group of patients. Runt-related transcription factor 2 (RUNX2), a member of the RUNX family, controls osteoblast differentiation an...

Descripción completa

Detalles Bibliográficos
Autores principales: Khalmuratova, Roza, Shin, Hyun-Woo, Kim, Dae Woo, Park, Jong-Wan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710985/
https://www.ncbi.nlm.nih.gov/pubmed/31331833
http://dx.doi.org/10.1016/j.ebiom.2019.07.035
_version_ 1783446451200720896
author Khalmuratova, Roza
Shin, Hyun-Woo
Kim, Dae Woo
Park, Jong-Wan
author_facet Khalmuratova, Roza
Shin, Hyun-Woo
Kim, Dae Woo
Park, Jong-Wan
author_sort Khalmuratova, Roza
collection PubMed
description BACKGROUND: There is increasing evidence supporting the impact of neoosteogenesis in the pathophysiology of chronic rhinosinusitis (CRS), especially in the recalcitrant group of patients. Runt-related transcription factor 2 (RUNX2), a member of the RUNX family, controls osteoblast differentiation and bone formation. However, the role and regulation of RUNX2 in CRS patients with neoosteogenesis remain unclear. The aim of the study is to determine the role of RUNX2 in neoosteogenesis of CRS patients. METHODS: Sinonasal bone and overlying mucosa samples were obtained from CRS patients with or without neoosteogenesis (n = 67) and healthy controls (n = 11). Double immunofluorescence, immunohistochemistry, and immunoblotting were used to evaluate RUNX2 expression in CRS patients with and without neoosteogenesis. In addition, the osteogenic activity of pro-inflammatory cytokines was examined by measuring alkaline phosphatase (ALP) activity and bone mineralisation in vitro. FINDINGS: RUNX2 was highly expressed in osteoblasts of CRS patients with neoosteogenesis compared with tissues from control subjects and those with CRS without neoosteogenesis. Mucosal extracts from CRS patients with neoosteogenesis showed increased RUNX2 expression and ALP activity in C2C12 cells, whereas those from patients without neoosteogenesis did not. Expression of interleukin (IL)-13 and IL-17A was upregulated in CRS patients with neoosteogenesis. ALP activity and Alizarin Red staining showed IL-13 and IL-17A dose-dependent osteoblast differentiation and mineralisation in vitro. INTERPRETATION: These findings suggested that IL-13- or IL-17A-induced RUNX2 contributed to new bone formation in CRS patients through its effect on the activity of osteoblasts. RUNX2 may be a novel target for preventing neoosteogenesis in CRS patients.
format Online
Article
Text
id pubmed-6710985
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-67109852019-08-29 Interleukin (IL)-13 and IL-17A contribute to neo-osteogenesis in chronic rhinosinusitis by inducing RUNX2 Khalmuratova, Roza Shin, Hyun-Woo Kim, Dae Woo Park, Jong-Wan EBioMedicine Research paper BACKGROUND: There is increasing evidence supporting the impact of neoosteogenesis in the pathophysiology of chronic rhinosinusitis (CRS), especially in the recalcitrant group of patients. Runt-related transcription factor 2 (RUNX2), a member of the RUNX family, controls osteoblast differentiation and bone formation. However, the role and regulation of RUNX2 in CRS patients with neoosteogenesis remain unclear. The aim of the study is to determine the role of RUNX2 in neoosteogenesis of CRS patients. METHODS: Sinonasal bone and overlying mucosa samples were obtained from CRS patients with or without neoosteogenesis (n = 67) and healthy controls (n = 11). Double immunofluorescence, immunohistochemistry, and immunoblotting were used to evaluate RUNX2 expression in CRS patients with and without neoosteogenesis. In addition, the osteogenic activity of pro-inflammatory cytokines was examined by measuring alkaline phosphatase (ALP) activity and bone mineralisation in vitro. FINDINGS: RUNX2 was highly expressed in osteoblasts of CRS patients with neoosteogenesis compared with tissues from control subjects and those with CRS without neoosteogenesis. Mucosal extracts from CRS patients with neoosteogenesis showed increased RUNX2 expression and ALP activity in C2C12 cells, whereas those from patients without neoosteogenesis did not. Expression of interleukin (IL)-13 and IL-17A was upregulated in CRS patients with neoosteogenesis. ALP activity and Alizarin Red staining showed IL-13 and IL-17A dose-dependent osteoblast differentiation and mineralisation in vitro. INTERPRETATION: These findings suggested that IL-13- or IL-17A-induced RUNX2 contributed to new bone formation in CRS patients through its effect on the activity of osteoblasts. RUNX2 may be a novel target for preventing neoosteogenesis in CRS patients. Elsevier 2019-07-19 /pmc/articles/PMC6710985/ /pubmed/31331833 http://dx.doi.org/10.1016/j.ebiom.2019.07.035 Text en © 2019 The Authors. Published by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research paper
Khalmuratova, Roza
Shin, Hyun-Woo
Kim, Dae Woo
Park, Jong-Wan
Interleukin (IL)-13 and IL-17A contribute to neo-osteogenesis in chronic rhinosinusitis by inducing RUNX2
title Interleukin (IL)-13 and IL-17A contribute to neo-osteogenesis in chronic rhinosinusitis by inducing RUNX2
title_full Interleukin (IL)-13 and IL-17A contribute to neo-osteogenesis in chronic rhinosinusitis by inducing RUNX2
title_fullStr Interleukin (IL)-13 and IL-17A contribute to neo-osteogenesis in chronic rhinosinusitis by inducing RUNX2
title_full_unstemmed Interleukin (IL)-13 and IL-17A contribute to neo-osteogenesis in chronic rhinosinusitis by inducing RUNX2
title_short Interleukin (IL)-13 and IL-17A contribute to neo-osteogenesis in chronic rhinosinusitis by inducing RUNX2
title_sort interleukin (il)-13 and il-17a contribute to neo-osteogenesis in chronic rhinosinusitis by inducing runx2
topic Research paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710985/
https://www.ncbi.nlm.nih.gov/pubmed/31331833
http://dx.doi.org/10.1016/j.ebiom.2019.07.035
work_keys_str_mv AT khalmuratovaroza interleukinil13andil17acontributetoneoosteogenesisinchronicrhinosinusitisbyinducingrunx2
AT shinhyunwoo interleukinil13andil17acontributetoneoosteogenesisinchronicrhinosinusitisbyinducingrunx2
AT kimdaewoo interleukinil13andil17acontributetoneoosteogenesisinchronicrhinosinusitisbyinducingrunx2
AT parkjongwan interleukinil13andil17acontributetoneoosteogenesisinchronicrhinosinusitisbyinducingrunx2