Cargando…
The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs
Gene duplication is a driver of the evolution of new functions. The duplication of genes encoding homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new complexes after a single duplication event. The loss of these heteromers may be required for the two paralo...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6711710/ https://www.ncbi.nlm.nih.gov/pubmed/31454312 http://dx.doi.org/10.7554/eLife.46754 |
_version_ | 1783446557376380928 |
---|---|
author | Marchant, Axelle Cisneros, Angel F Dubé, Alexandre K Gagnon-Arsenault, Isabelle Ascencio, Diana Jain, Honey Aubé, Simon Eberlein, Chris Evans-Yamamoto, Daniel Yachie, Nozomu Landry, Christian R |
author_facet | Marchant, Axelle Cisneros, Angel F Dubé, Alexandre K Gagnon-Arsenault, Isabelle Ascencio, Diana Jain, Honey Aubé, Simon Eberlein, Chris Evans-Yamamoto, Daniel Yachie, Nozomu Landry, Christian R |
author_sort | Marchant, Axelle |
collection | PubMed |
description | Gene duplication is a driver of the evolution of new functions. The duplication of genes encoding homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new complexes after a single duplication event. The loss of these heteromers may be required for the two paralogs to evolve independent functions. Using yeast as a model, we find that heteromerization is frequent among duplicated homomers and correlates with functional similarity between paralogs. Using in silico evolution, we show that for homomers and heteromers sharing binding interfaces, mutations in one paralog can have structural pleiotropic effects on both interactions, resulting in highly correlated responses of the complexes to selection. Therefore, heteromerization could be preserved indirectly due to selection for the maintenance of homomers, thus slowing down functional divergence between paralogs. We suggest that paralogs can overcome the obstacle of structural pleiotropy by regulatory evolution at the transcriptional and post-translational levels. |
format | Online Article Text |
id | pubmed-6711710 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-67117102019-08-30 The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs Marchant, Axelle Cisneros, Angel F Dubé, Alexandre K Gagnon-Arsenault, Isabelle Ascencio, Diana Jain, Honey Aubé, Simon Eberlein, Chris Evans-Yamamoto, Daniel Yachie, Nozomu Landry, Christian R eLife Evolutionary Biology Gene duplication is a driver of the evolution of new functions. The duplication of genes encoding homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new complexes after a single duplication event. The loss of these heteromers may be required for the two paralogs to evolve independent functions. Using yeast as a model, we find that heteromerization is frequent among duplicated homomers and correlates with functional similarity between paralogs. Using in silico evolution, we show that for homomers and heteromers sharing binding interfaces, mutations in one paralog can have structural pleiotropic effects on both interactions, resulting in highly correlated responses of the complexes to selection. Therefore, heteromerization could be preserved indirectly due to selection for the maintenance of homomers, thus slowing down functional divergence between paralogs. We suggest that paralogs can overcome the obstacle of structural pleiotropy by regulatory evolution at the transcriptional and post-translational levels. eLife Sciences Publications, Ltd 2019-08-27 /pmc/articles/PMC6711710/ /pubmed/31454312 http://dx.doi.org/10.7554/eLife.46754 Text en © 2019, Marchant et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Evolutionary Biology Marchant, Axelle Cisneros, Angel F Dubé, Alexandre K Gagnon-Arsenault, Isabelle Ascencio, Diana Jain, Honey Aubé, Simon Eberlein, Chris Evans-Yamamoto, Daniel Yachie, Nozomu Landry, Christian R The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs |
title | The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs |
title_full | The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs |
title_fullStr | The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs |
title_full_unstemmed | The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs |
title_short | The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs |
title_sort | role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs |
topic | Evolutionary Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6711710/ https://www.ncbi.nlm.nih.gov/pubmed/31454312 http://dx.doi.org/10.7554/eLife.46754 |
work_keys_str_mv | AT marchantaxelle theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT cisnerosangelf theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT dubealexandrek theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT gagnonarsenaultisabelle theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT ascenciodiana theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT jainhoney theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT aubesimon theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT eberleinchris theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT evansyamamotodaniel theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT yachienozomu theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT landrychristianr theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT marchantaxelle roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT cisnerosangelf roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT dubealexandrek roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT gagnonarsenaultisabelle roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT ascenciodiana roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT jainhoney roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT aubesimon roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT eberleinchris roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT evansyamamotodaniel roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT yachienozomu roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT landrychristianr roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs |