Cargando…

The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs

Gene duplication is a driver of the evolution of new functions. The duplication of genes encoding homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new complexes after a single duplication event. The loss of these heteromers may be required for the two paralo...

Descripción completa

Detalles Bibliográficos
Autores principales: Marchant, Axelle, Cisneros, Angel F, Dubé, Alexandre K, Gagnon-Arsenault, Isabelle, Ascencio, Diana, Jain, Honey, Aubé, Simon, Eberlein, Chris, Evans-Yamamoto, Daniel, Yachie, Nozomu, Landry, Christian R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6711710/
https://www.ncbi.nlm.nih.gov/pubmed/31454312
http://dx.doi.org/10.7554/eLife.46754
_version_ 1783446557376380928
author Marchant, Axelle
Cisneros, Angel F
Dubé, Alexandre K
Gagnon-Arsenault, Isabelle
Ascencio, Diana
Jain, Honey
Aubé, Simon
Eberlein, Chris
Evans-Yamamoto, Daniel
Yachie, Nozomu
Landry, Christian R
author_facet Marchant, Axelle
Cisneros, Angel F
Dubé, Alexandre K
Gagnon-Arsenault, Isabelle
Ascencio, Diana
Jain, Honey
Aubé, Simon
Eberlein, Chris
Evans-Yamamoto, Daniel
Yachie, Nozomu
Landry, Christian R
author_sort Marchant, Axelle
collection PubMed
description Gene duplication is a driver of the evolution of new functions. The duplication of genes encoding homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new complexes after a single duplication event. The loss of these heteromers may be required for the two paralogs to evolve independent functions. Using yeast as a model, we find that heteromerization is frequent among duplicated homomers and correlates with functional similarity between paralogs. Using in silico evolution, we show that for homomers and heteromers sharing binding interfaces, mutations in one paralog can have structural pleiotropic effects on both interactions, resulting in highly correlated responses of the complexes to selection. Therefore, heteromerization could be preserved indirectly due to selection for the maintenance of homomers, thus slowing down functional divergence between paralogs. We suggest that paralogs can overcome the obstacle of structural pleiotropy by regulatory evolution at the transcriptional and post-translational levels.
format Online
Article
Text
id pubmed-6711710
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-67117102019-08-30 The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs Marchant, Axelle Cisneros, Angel F Dubé, Alexandre K Gagnon-Arsenault, Isabelle Ascencio, Diana Jain, Honey Aubé, Simon Eberlein, Chris Evans-Yamamoto, Daniel Yachie, Nozomu Landry, Christian R eLife Evolutionary Biology Gene duplication is a driver of the evolution of new functions. The duplication of genes encoding homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new complexes after a single duplication event. The loss of these heteromers may be required for the two paralogs to evolve independent functions. Using yeast as a model, we find that heteromerization is frequent among duplicated homomers and correlates with functional similarity between paralogs. Using in silico evolution, we show that for homomers and heteromers sharing binding interfaces, mutations in one paralog can have structural pleiotropic effects on both interactions, resulting in highly correlated responses of the complexes to selection. Therefore, heteromerization could be preserved indirectly due to selection for the maintenance of homomers, thus slowing down functional divergence between paralogs. We suggest that paralogs can overcome the obstacle of structural pleiotropy by regulatory evolution at the transcriptional and post-translational levels. eLife Sciences Publications, Ltd 2019-08-27 /pmc/articles/PMC6711710/ /pubmed/31454312 http://dx.doi.org/10.7554/eLife.46754 Text en © 2019, Marchant et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Evolutionary Biology
Marchant, Axelle
Cisneros, Angel F
Dubé, Alexandre K
Gagnon-Arsenault, Isabelle
Ascencio, Diana
Jain, Honey
Aubé, Simon
Eberlein, Chris
Evans-Yamamoto, Daniel
Yachie, Nozomu
Landry, Christian R
The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs
title The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs
title_full The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs
title_fullStr The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs
title_full_unstemmed The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs
title_short The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs
title_sort role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs
topic Evolutionary Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6711710/
https://www.ncbi.nlm.nih.gov/pubmed/31454312
http://dx.doi.org/10.7554/eLife.46754
work_keys_str_mv AT marchantaxelle theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT cisnerosangelf theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT dubealexandrek theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT gagnonarsenaultisabelle theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT ascenciodiana theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT jainhoney theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT aubesimon theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT eberleinchris theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT evansyamamotodaniel theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT yachienozomu theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT landrychristianr theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT marchantaxelle roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT cisnerosangelf roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT dubealexandrek roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT gagnonarsenaultisabelle roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT ascenciodiana roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT jainhoney roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT aubesimon roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT eberleinchris roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT evansyamamotodaniel roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT yachienozomu roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT landrychristianr roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs