Cargando…
Machine learning methods can more efficiently predict prostate cancer compared with prostate-specific antigen density and prostate-specific antigen velocity
BACKGROUND: Prostate-specific antigen (PSA)–based screening for prostate cancer has been widely performed, but its accuracy is unsatisfactory. To improve accuracy, building an effective statistical model using machine learning methods (MLMs) is a promising approach. METHODS: Data on continuous chang...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Asian Pacific Prostate Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713794/ https://www.ncbi.nlm.nih.gov/pubmed/31485436 http://dx.doi.org/10.1016/j.prnil.2019.01.001 |