Cargando…
Machine learning methods can more efficiently predict prostate cancer compared with prostate-specific antigen density and prostate-specific antigen velocity
BACKGROUND: Prostate-specific antigen (PSA)–based screening for prostate cancer has been widely performed, but its accuracy is unsatisfactory. To improve accuracy, building an effective statistical model using machine learning methods (MLMs) is a promising approach. METHODS: Data on continuous chang...
Autores principales: | Nitta, Satoshi, Tsutsumi, Masakazu, Sakka, Shotaro, Endo, Tsuyoshi, Hashimoto, Kenichiro, Hasegawa, Morikuni, Hayashi, Takayuki, Kawai, Koji, Nishiyama, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Asian Pacific Prostate Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713794/ https://www.ncbi.nlm.nih.gov/pubmed/31485436 http://dx.doi.org/10.1016/j.prnil.2019.01.001 |
Ejemplares similares
-
Prostate-Specific Antigen and Prostate-Specific Antigen Velocity as Threshold Indicators in (11)C-Acetate PET/CTAC Scanning for Prostate Cancer Recurrence
por: Dusing, Reginald W., et al.
Publicado: (2014) -
Prostate-specific antigen velocity in diagnosis and prognosis of prostate cancer - a systematic review
por: Javaeed, Arslaan, et al.
Publicado: (2020) -
Prostate-Specific Antigen Velocity Predicts Surgical Outcome of Thulium Laser Enucleation of the Prostate
por: Chen, Po-You, et al.
Publicado: (2022) -
Co-expression and impact of prostate specific membrane antigen and prostate specific antigen in prostatic pathologies
por: Ben Jemaa , Awatef, et al.
Publicado: (2010) -
Prostate specific antigen /
Publicado: (2001)