Cargando…
Why the Reactive Oxygen Species of the Fenton Reaction Switches from Oxoiron(IV) Species to Hydroxyl Radical in Phosphate Buffer Solutions? A Computational Rationale
[Image: see text] It has been shown that the major reactive oxygen species (ROS) generated by the aqueous reaction of Fe(II) and H(2)O(2) (i.e., the Fenton reaction) are high-valent oxoiron(IV) species, whereas the hydroxyl radical plays a role only in very acidic conditions. Nevertheless, when the...
Autor principal: | Chen, Hsing-Yin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6714542/ https://www.ncbi.nlm.nih.gov/pubmed/31497730 http://dx.doi.org/10.1021/acsomega.9b02023 |
Ejemplares similares
-
Determining the inherent selectivity for carbon radical hydroxylation versus halogenation with high-spin oxoiron(iv)–halide complexes: a concerted rebound step
por: Tao, Yaping, et al.
Publicado: (2022) -
Toward the Synthesis of More Reactive S = 2 Non-Heme Oxoiron(IV) Complexes
por: Puri, Mayank, et al.
Publicado: (2015) -
Towards reliable quantification of hydroxyl radicals in the Fenton reaction using chemical probes
por: Rutely C., Burgos Castillo, et al.
Publicado: (2018) -
Stability and Catalase-Like Activity of a Mononuclear Non-Heme Oxoiron(IV) Complex in Aqueous Solution
por: Kripli, Balázs, et al.
Publicado: (2019) -
A Pseudotetrahedral Terminal Oxoiron(IV) Complex: Mechanistic Promiscuity in C−H Bond Oxidation Reactions
por: Warm, Katrin, et al.
Publicado: (2021)