Cargando…
In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties
Regulated exocytosis of synaptic vesicles is substantially faster than of endocrine dense core vesicles despite similar molecular machineries. The reasons for this difference are unknown and could be due to different regulatory proteins, different spatial arrangements, different vesicle sizes, or ot...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715626/ https://www.ncbi.nlm.nih.gov/pubmed/31467284 http://dx.doi.org/10.1038/s41467-019-11873-8 |
_version_ | 1783447245554712576 |
---|---|
author | Kreutzberger, Alex J. B. Kiessling, Volker Stroupe, Christopher Liang, Binyong Preobraschenski, Julia Ganzella, Marcelo Kreutzberger, Mark A. B. Nakamoto, Robert Jahn, Reinhard Castle, J. David Tamm, Lukas K. |
author_facet | Kreutzberger, Alex J. B. Kiessling, Volker Stroupe, Christopher Liang, Binyong Preobraschenski, Julia Ganzella, Marcelo Kreutzberger, Mark A. B. Nakamoto, Robert Jahn, Reinhard Castle, J. David Tamm, Lukas K. |
author_sort | Kreutzberger, Alex J. B. |
collection | PubMed |
description | Regulated exocytosis of synaptic vesicles is substantially faster than of endocrine dense core vesicles despite similar molecular machineries. The reasons for this difference are unknown and could be due to different regulatory proteins, different spatial arrangements, different vesicle sizes, or other factors. To address these questions, we take a reconstitution approach and compare regulated SNARE-mediated fusion of purified synaptic and dense core chromaffin and insulin vesicles using a single vesicle-supported membrane fusion assay. In all cases, Munc18 and complexin are required to restrict fusion in the absence of calcium. Calcium triggers fusion of all docked vesicles. Munc13 (C1C2MUN domain) is required for synaptic and enhanced insulin vesicle fusion, but not for chromaffin vesicles, correlating inversely with the presence of CAPS protein on purified vesicles. Striking disparities in calcium-triggered fusion rates are observed, increasing with curvature with time constants 0.23 s (synaptic vesicles), 3.3 s (chromaffin vesicles), and 9.1 s (insulin vesicles) and correlating with rate differences in cells. |
format | Online Article Text |
id | pubmed-6715626 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-67156262019-09-03 In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties Kreutzberger, Alex J. B. Kiessling, Volker Stroupe, Christopher Liang, Binyong Preobraschenski, Julia Ganzella, Marcelo Kreutzberger, Mark A. B. Nakamoto, Robert Jahn, Reinhard Castle, J. David Tamm, Lukas K. Nat Commun Article Regulated exocytosis of synaptic vesicles is substantially faster than of endocrine dense core vesicles despite similar molecular machineries. The reasons for this difference are unknown and could be due to different regulatory proteins, different spatial arrangements, different vesicle sizes, or other factors. To address these questions, we take a reconstitution approach and compare regulated SNARE-mediated fusion of purified synaptic and dense core chromaffin and insulin vesicles using a single vesicle-supported membrane fusion assay. In all cases, Munc18 and complexin are required to restrict fusion in the absence of calcium. Calcium triggers fusion of all docked vesicles. Munc13 (C1C2MUN domain) is required for synaptic and enhanced insulin vesicle fusion, but not for chromaffin vesicles, correlating inversely with the presence of CAPS protein on purified vesicles. Striking disparities in calcium-triggered fusion rates are observed, increasing with curvature with time constants 0.23 s (synaptic vesicles), 3.3 s (chromaffin vesicles), and 9.1 s (insulin vesicles) and correlating with rate differences in cells. Nature Publishing Group UK 2019-08-29 /pmc/articles/PMC6715626/ /pubmed/31467284 http://dx.doi.org/10.1038/s41467-019-11873-8 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Kreutzberger, Alex J. B. Kiessling, Volker Stroupe, Christopher Liang, Binyong Preobraschenski, Julia Ganzella, Marcelo Kreutzberger, Mark A. B. Nakamoto, Robert Jahn, Reinhard Castle, J. David Tamm, Lukas K. In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties |
title | In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties |
title_full | In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties |
title_fullStr | In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties |
title_full_unstemmed | In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties |
title_short | In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties |
title_sort | in vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715626/ https://www.ncbi.nlm.nih.gov/pubmed/31467284 http://dx.doi.org/10.1038/s41467-019-11873-8 |
work_keys_str_mv | AT kreutzbergeralexjb invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties AT kiesslingvolker invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties AT stroupechristopher invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties AT liangbinyong invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties AT preobraschenskijulia invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties AT ganzellamarcelo invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties AT kreutzbergermarkab invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties AT nakamotorobert invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties AT jahnreinhard invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties AT castlejdavid invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties AT tammlukask invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties |