Cargando…

In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties

Regulated exocytosis of synaptic vesicles is substantially faster than of endocrine dense core vesicles despite similar molecular machineries. The reasons for this difference are unknown and could be due to different regulatory proteins, different spatial arrangements, different vesicle sizes, or ot...

Descripción completa

Detalles Bibliográficos
Autores principales: Kreutzberger, Alex J. B., Kiessling, Volker, Stroupe, Christopher, Liang, Binyong, Preobraschenski, Julia, Ganzella, Marcelo, Kreutzberger, Mark A. B., Nakamoto, Robert, Jahn, Reinhard, Castle, J. David, Tamm, Lukas K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715626/
https://www.ncbi.nlm.nih.gov/pubmed/31467284
http://dx.doi.org/10.1038/s41467-019-11873-8
_version_ 1783447245554712576
author Kreutzberger, Alex J. B.
Kiessling, Volker
Stroupe, Christopher
Liang, Binyong
Preobraschenski, Julia
Ganzella, Marcelo
Kreutzberger, Mark A. B.
Nakamoto, Robert
Jahn, Reinhard
Castle, J. David
Tamm, Lukas K.
author_facet Kreutzberger, Alex J. B.
Kiessling, Volker
Stroupe, Christopher
Liang, Binyong
Preobraschenski, Julia
Ganzella, Marcelo
Kreutzberger, Mark A. B.
Nakamoto, Robert
Jahn, Reinhard
Castle, J. David
Tamm, Lukas K.
author_sort Kreutzberger, Alex J. B.
collection PubMed
description Regulated exocytosis of synaptic vesicles is substantially faster than of endocrine dense core vesicles despite similar molecular machineries. The reasons for this difference are unknown and could be due to different regulatory proteins, different spatial arrangements, different vesicle sizes, or other factors. To address these questions, we take a reconstitution approach and compare regulated SNARE-mediated fusion of purified synaptic and dense core chromaffin and insulin vesicles using a single vesicle-supported membrane fusion assay. In all cases, Munc18 and complexin are required to restrict fusion in the absence of calcium. Calcium triggers fusion of all docked vesicles. Munc13 (C1C2MUN domain) is required for synaptic and enhanced insulin vesicle fusion, but not for chromaffin vesicles, correlating inversely with the presence of CAPS protein on purified vesicles. Striking disparities in calcium-triggered fusion rates are observed, increasing with curvature with time constants 0.23 s (synaptic vesicles), 3.3 s (chromaffin vesicles), and 9.1 s (insulin vesicles) and correlating with rate differences in cells.
format Online
Article
Text
id pubmed-6715626
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-67156262019-09-03 In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties Kreutzberger, Alex J. B. Kiessling, Volker Stroupe, Christopher Liang, Binyong Preobraschenski, Julia Ganzella, Marcelo Kreutzberger, Mark A. B. Nakamoto, Robert Jahn, Reinhard Castle, J. David Tamm, Lukas K. Nat Commun Article Regulated exocytosis of synaptic vesicles is substantially faster than of endocrine dense core vesicles despite similar molecular machineries. The reasons for this difference are unknown and could be due to different regulatory proteins, different spatial arrangements, different vesicle sizes, or other factors. To address these questions, we take a reconstitution approach and compare regulated SNARE-mediated fusion of purified synaptic and dense core chromaffin and insulin vesicles using a single vesicle-supported membrane fusion assay. In all cases, Munc18 and complexin are required to restrict fusion in the absence of calcium. Calcium triggers fusion of all docked vesicles. Munc13 (C1C2MUN domain) is required for synaptic and enhanced insulin vesicle fusion, but not for chromaffin vesicles, correlating inversely with the presence of CAPS protein on purified vesicles. Striking disparities in calcium-triggered fusion rates are observed, increasing with curvature with time constants 0.23 s (synaptic vesicles), 3.3 s (chromaffin vesicles), and 9.1 s (insulin vesicles) and correlating with rate differences in cells. Nature Publishing Group UK 2019-08-29 /pmc/articles/PMC6715626/ /pubmed/31467284 http://dx.doi.org/10.1038/s41467-019-11873-8 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Kreutzberger, Alex J. B.
Kiessling, Volker
Stroupe, Christopher
Liang, Binyong
Preobraschenski, Julia
Ganzella, Marcelo
Kreutzberger, Mark A. B.
Nakamoto, Robert
Jahn, Reinhard
Castle, J. David
Tamm, Lukas K.
In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties
title In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties
title_full In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties
title_fullStr In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties
title_full_unstemmed In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties
title_short In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties
title_sort in vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715626/
https://www.ncbi.nlm.nih.gov/pubmed/31467284
http://dx.doi.org/10.1038/s41467-019-11873-8
work_keys_str_mv AT kreutzbergeralexjb invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties
AT kiesslingvolker invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties
AT stroupechristopher invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties
AT liangbinyong invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties
AT preobraschenskijulia invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties
AT ganzellamarcelo invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties
AT kreutzbergermarkab invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties
AT nakamotorobert invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties
AT jahnreinhard invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties
AT castlejdavid invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties
AT tammlukask invitrofusionofsinglesynapticanddensecorevesiclesreproduceskeyphysiologicalproperties